- -

Simple organic structure directing agents for synthesizing nanocrystalline zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simple organic structure directing agents for synthesizing nanocrystalline zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallego-Sánchez, Eva María es_ES
dc.contributor.author Paris-Carrizo, Cecilia Gertrudis es_ES
dc.contributor.author Díaz-Rey, Maria Del Rocio es_ES
dc.contributor.author Martínez Armero, Marta Evelia es_ES
dc.contributor.author Martínez-Triguero, Joaquín es_ES
dc.contributor.author Martínez, Cristina es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2018-07-09T06:57:43Z
dc.date.available 2018-07-09T06:57:43Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105552
dc.description.abstract [EN] The synthesis of the ZSM-5 and beta zeolites in their nanosized form has been achieved by using simple alkyl-substituted mono-cationic cyclic ammonium cations as OSDA molecules. The particular combination of a cyclic fragment and a short linear alkyl-chain group (preferentially C4) within the monocationic OSDA molecules allows directing the crystallization of nanosized zeolites with excellent solid yields (above 90%). Interestingly, the formation of the nanosized ZSM-5 and beta zeolites mostly depends on the size and nature of the cyclic fragment of the OSDA molecule, resulting in all cases in nanocrystalline solids with homogeneous distributions of particle sizes (similar to 10-25 nm) and controlled Si/Al molar ratios (similar to 15-30). The achieved nanosized ZSM-5 and beta zeolites have been extensively characterized by different techniques to study their physico-chemical properties, such as chemical composition, pore accessibility or Bronsted acidity, among others. Moreover, the catalytic properties of the nanosized ZSM-5 and beta zeolites have been evaluated for different chemical reactions, including methanol-to-olefins (MTO) in the case of ZSM-5, and alkylation of benzene with propylene to obtain cumene and oligomerization of light olefins to liquid fuels in the case of beta, observing in all cases improved catalytic activity and product selectivity towards target products when compared to related catalysts. es_ES
dc.description.sponsorship This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), MAT2015-71261-R and CTQ2015-70126-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion Ramon Areces through a research contract of the "Life and Materials Science" program. E. M. G. and M. R. D-R. acknowledge "La Caixa - Severo Ochoa" International PhD Fellowships (call 2015). M. E. M-A. thanks MINECO for economical support through pre-doctoral fellowship (BES-2013-066800). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. en_EN
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Simple organic structure directing agents for synthesizing nanocrystalline zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7sc02858j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2013-066800/ES/BES-2013-066800/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gallego-Sánchez, EM.; Paris-Carrizo, CG.; Díaz-Rey, MDR.; Martínez Armero, ME.; Martínez-Triguero, J.; Martínez, C.; Moliner Marin, M.... (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science. 8(12):8138-8149. https://doi.org/10.1039/c7sc02858j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7sc02858j es_ES
dc.description.upvformatpinicio 8138 es_ES
dc.description.upvformatpfin 8149 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 29568462 en_EN
dc.identifier.pmcid PMC5855293 en_EN
dc.relation.pasarela S\346470 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona
dc.contributor.funder European Commission
dc.description.references Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344 es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006 es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2008). The State of the Art in Selective Catalytic Reduction of NOxby Ammonia Using Metal‐Exchanged Zeolite Catalysts. Catalysis Reviews, 50(4), 492-531. doi:10.1080/01614940802480122 es_ES
dc.description.references Tosheva, L., & Valtchev, V. P. (2005). Nanozeolites:  Synthesis, Crystallization Mechanism, and Applications. Chemistry of Materials, 17(10), 2494-2513. doi:10.1021/cm047908z es_ES
dc.description.references Valtchev, V., & Tosheva, L. (2013). Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 113(8), 6734-6760. doi:10.1021/cr300439k es_ES
dc.description.references Sarazen, M. L., Doskocil, E., & Iglesia, E. (2016). Effects of Void Environment and Acid Strength on Alkene Oligomerization Selectivity. ACS Catalysis, 6(10), 7059-7070. doi:10.1021/acscatal.6b02128 es_ES
dc.description.references Mintova, S., Gilson, J.-P., & Valtchev, V. (2013). Advances in nanosized zeolites. Nanoscale, 5(15), 6693. doi:10.1039/c3nr01629c es_ES
dc.description.references Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3 es_ES
dc.description.references Mintova, S., Valtchev, V., Onfroy, T., Marichal, C., Knözinger, H., & Bein, T. (2006). Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 90(1-3), 237-245. doi:10.1016/j.micromeso.2005.11.026 es_ES
dc.description.references Schoeman, B. J. (2001). Journal of Porous Materials, 8(1), 13-22. doi:10.1023/a:1026566116805 es_ES
dc.description.references Van Grieken, R., Sotelo, J. L., Menéndez, J. M., & Melero, J. A. (2000). Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 39(1-2), 135-147. doi:10.1016/s1387-1811(00)00190-6 es_ES
dc.description.references Iwakai, K., Tago, T., Konno, H., Nakasaka, Y., & Masuda, T. (2011). Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/surfactant/organic solvent using fumed silica as the Si source. Microporous and Mesoporous Materials, 141(1-3), 167-174. doi:10.1016/j.micromeso.2010.11.001 es_ES
dc.description.references Bellussi, G., & Pollesel, P. (2005). Industrial applications of zeolite catalysis: production and uses of light olefins. Studies in Surface Science and Catalysis, 1201-1212. doi:10.1016/s0167-2991(05)80466-5 es_ES
dc.description.references Yilmaz, B., & Müller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics in Catalysis, 52(6-7), 888-895. doi:10.1007/s11244-009-9226-0 es_ES
dc.description.references Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039 es_ES
dc.description.references Larlus, O., Mintova, S., Wilson, S. T., Willis, R. R., Abrevaya, H., & Bein, T. (2011). A powerful structure-directing agent for the synthesis of nanosized Al- and high-silica zeolite Beta in alkaline medium. Microporous and Mesoporous Materials, 142(1), 17-25. doi:10.1016/j.micromeso.2010.08.025 es_ES
dc.description.references Choi, M., Na, K., & Ryoo, R. (2009). The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization. Chemical Communications, (20), 2845. doi:10.1039/b905087f es_ES
dc.description.references Zhu, J., Zhu, Y., Zhu, L., Rigutto, M., van der Made, A., Yang, C., … Xiao, F.-S. (2014). Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. Journal of the American Chemical Society, 136(6), 2503-2510. doi:10.1021/ja411117y es_ES
dc.description.references Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288 es_ES
dc.description.references Kim, Y., Kim, K., & Ryoo, R. (2017). Cooperative Structure Direction of Diammonium Surfactants and Sodium Ions to Generate MFI Zeolite Nanocrystals of Controlled Thickness. Chemistry of Materials, 29(4), 1752-1757. doi:10.1021/acs.chemmater.6b05338 es_ES
dc.description.references Mintova, S., Grand, J., & Valtchev, V. (2016). Nanosized zeolites: Quo Vadis? Comptes Rendus Chimie, 19(1-2), 183-191. doi:10.1016/j.crci.2015.11.005 es_ES
dc.description.references Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f es_ES
dc.description.references Chiappe, C., Pomelli, C. S., & Rajamani, S. (2011). Influence of Structural Variations in Cationic and Anionic Moieties on the Polarity of Ionic Liquids. The Journal of Physical Chemistry B, 115(31), 9653-9661. doi:10.1021/jp2045788 es_ES
dc.description.references Corma, A., Martı́nez-Soria, V., & Schnoeveld, E. (2000). Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. Journal of Catalysis, 192(1), 163-173. doi:10.1006/jcat.2000.2849 es_ES
dc.description.references KOKOTAILO, G. T., LAWTON, S. L., OLSON, D. H., & MEIER, W. M. (1978). Structure of synthetic zeolite ZSM-5. Nature, 272(5652), 437-438. doi:10.1038/272437a0 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references Treacy, M. M. J., & Newsam, J. M. (1988). Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature, 332(6161), 249-251. doi:10.1038/332249a0 es_ES
dc.description.references Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29(1-2), 3-48. doi:10.1016/s1387-1811(98)00319-9 es_ES
dc.description.references Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007 es_ES
dc.description.references Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c es_ES
dc.description.references Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8 es_ES
dc.description.references Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822 es_ES
dc.description.references Peratello, S. (1999). Olefins oligomerization: thermodynamics and kinetics over a mesoporous silica–alumina. Catalysis Today, 52(2-3), 271-277. doi:10.1016/s0920-5861(99)00081-4 es_ES
dc.description.references Corma, A., Martínez, C., & Doskocil, E. (2013). Designing MFI-based catalysts with improved catalyst life for oligomerization to high-quality liquid fuels. Journal of Catalysis, 300, 183-196. doi:10.1016/j.jcat.2012.12.029 es_ES
dc.description.references Pater, J. P. G., Jacobs, P. A., & Martens, J. A. (1998). 1-Hexene Oligomerization in Liquid, Vapor, and Supercritical Phases over Beidellite and Ultrastable Y Zeolite Catalysts. Journal of Catalysis, 179(2), 477-482. doi:10.1006/jcat.1998.2250 es_ES
dc.description.references Tabak, S. A., Krambeck, F. J., & Garwood, W. E. (1986). Conversion of propylene and butylene over ZSM-5 catalyst. AIChE Journal, 32(9), 1526-1531. doi:10.1002/aic.690320913 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem