- -

Potential reduction in energy consumption in consolidated built environments. An analysis based on climate, urban planning and users

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Potential reduction in energy consumption in consolidated built environments. An analysis based on climate, urban planning and users

Mostrar el registro completo del ítem

Compte Coloma, E. (2018). Potential reduction in energy consumption in consolidated built environments. An analysis based on climate, urban planning and users. VITRUVIO - International Journal of Architectural Technology and Sustainability. 3(1):46-71. https://doi.org/10.4995/vitruvio-ijats.2018.10098

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105726

Ficheros en el ítem

Metadatos del ítem

Título: Potential reduction in energy consumption in consolidated built environments. An analysis based on climate, urban planning and users
Autor: Compte Coloma, Esther
Fecha difusión:
Resumen:
[EN] In order to minimise the environmental problems of energy consumption this study aims to assess the potential energy demand reduction of the three main building types within three urban configurations of a Mediterranean ...[+]
Palabras clave: Vitruvio , Obsolete buildings , Warm regions , User behaviour , Energy consumption , Building refurbishment
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
VITRUVIO - International Journal of Architectural Technology and Sustainability. (eissn: 2444-9091 )
DOI: 10.4995/vitruvio-ijats.2018.10098
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/vitruvio-ijats.2018.10098
Tipo: Artículo

References

A.d. Barcelona, (2009). Plan de Movilidad y Espacio Público de Lugo, Lugo city council, Lugo.

Ai Z., Mak C., (2014). in: Modeling of coupled urban wind flow and indoor air flow on a high-density near-wall mesh: Sensitivity analyses and case study for single-sided ventilation, Environ. Model. Software 60 57-68, http://www.sciencedirect.com/science/article/pii/S1364815214001753. https://doi.org/10.1016/j.envsoft.2014.06.010

Antone Faggianelli G., Brun A., Wurtz E., Muselli M., (2014) in: Natural cross ventilation in buildings on mediterranean coastal zones, Energy Build. 77, 206-218, http://www.sciencedirect.com/science/article/pii/S037877881400262X. https://doi.org/10.1016/j.enbuild.2014.03.042 [+]
A.d. Barcelona, (2009). Plan de Movilidad y Espacio Público de Lugo, Lugo city council, Lugo.

Ai Z., Mak C., (2014). in: Modeling of coupled urban wind flow and indoor air flow on a high-density near-wall mesh: Sensitivity analyses and case study for single-sided ventilation, Environ. Model. Software 60 57-68, http://www.sciencedirect.com/science/article/pii/S1364815214001753. https://doi.org/10.1016/j.envsoft.2014.06.010

Antone Faggianelli G., Brun A., Wurtz E., Muselli M., (2014) in: Natural cross ventilation in buildings on mediterranean coastal zones, Energy Build. 77, 206-218, http://www.sciencedirect.com/science/article/pii/S037877881400262X. https://doi.org/10.1016/j.enbuild.2014.03.042

Amado M., Poggi F., (2014). in: Solar energy integration in urban planning: GUUD model, Energy Procedia 50, 277-284, http://www.sciencedirect.com/science/article/pii/S187661021400770X. https://doi.org/10.1016/j.egypro.2014.06.034

Butera J.M., (2013). in: Zero-energy buildings: the challenges, Advanc. Build. Energy Research 7 (1), 51-65, http://www.tandfonline.com/doi/full/10.1080/17512549.2012.756430.

Chesné L., Duforestel T., Roux J.-J., Rusaouën G., (2012). in: Energy saving and environmental resources potentials: Toward new methods of building design, Build. Environ. 58, 199-207, http://www.sciencedirect.com/science/article/pii/S0360132312002016. https://doi.org/10.1016/j.buildenv.2012.07.013

Cole R.J. (2012) in: Regenerative design and development: Current theory and practice. Building Research & Info, 40(1), 1-6. http://www.tandfonline.com/doi/abs/10.1080/09613218.2012.617516 https://doi.org/10.1080/09613218.2012.617516

Eames M., Dixon T., May T., Hunt M. (2013)., in: City futures: Exploring urban retrofit and sustainable transitions. Building Research & Info, 41(5), 504-516. http://www.tandfonline.com/doi/abs/10.1080/09613218.2013.805063 https://doi.org/10.1080/09613218.2013.805063

Episcope (2009). Typology approach for building stock energy assessment. Retrieved from http:// piscope.eu/welcome/

García-Esparza J.A., Caballero C., (2016). in: Procedure for evaluating and rehabilitating envelopes of obsolete buildings in warm regions, Advanc. Build. Energy Research 2016, http://tandfonline.com/doi/full/10.1080/17512549.2016.1237376.

García-Esparza J.A., Alca-iz E., (2017). in: To rehabilitate the habitability. Scenario simulation for consolidated urban areas in warm regions, WEAS Trans. Envi. Develop. 13 Printing.

Herrera I.J., (2010). Análisis urbanístico de Barrios Vulnerables en Espa-a. Sobre la vulnerabilidad urbana, Gobierno de Espa-a, Madrid.

Instituto para la Diversificación y Ahorro de Energía (IDAE) (2011). Analysis of the energy consumption in the residential sector in Spain, (SECH-SPAHOUSEC PROJECT).

Instituto para la Diversificación y Ahorro de Energía (IDAE), Consumos del Sector Residencial en Espa-a, Madrid, 2014. Retrieved from: http://www.idae.es/informacion-y-publicaciones/estudios-informes-yestadisticas

Jiang Y., Alexander D., Jenkins H., Arthur R., Chen Q., (2003). in: Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation, Journal Wind Engin. Indust. Aerodyn. 91

(3) (2003), 331-353, http://www.sciencedirect.com/science/article/pii/S016761050200380X. https://doi.org/10.1016/S0167-6105(02)00380-X

Kanters J., Horvat M., (2012) in: Solar energy as a design parameter in urban planning, Energy Procedia 30, 1143-1152, http://www.sciencedirect.com/science/article/pii/S1876610212016438. https://doi.org/10.1016/j.egypro.2012.11.127

Karvonen A., (2013). in: Towards systemic domestic retrofit: A social practices approach. Building Research & Info. 41(5), 563-574. http://www.tandfonline.com/doi/abs/10.1080/09613218.2013.805298 https://doi.org/10.1080/09613218.2013.805298

Kopp G. A., Surry D., Mans C., (2005) in: Wind effects of parapets on low buildings: Part 1. Basic aerodynamics and local loads, Journal of Wind Engin. Indust. Aerodyn. 93 (11), 817-841, http://www.sciencedirect.com/science/article/pii/S0167610505000875. https://doi.org/10.1016/j.jweia.2005.08.006

Kosir M., Guedi Capeluto I., Krainer A., Kristl Z., (2014) in: Solar potential in existing urban layouts-Critical overview of the existing building stock in Slovenian context, Energy Policy 69, 443-456, http://www.sciencedirect.com/science/article/pii/S0301421514000846. https://doi.org/10.1016/j.enpol.2014.01.045

Kurtz F., Monzón M., López-Mesa B., (2015). in: Energy and acoustics related obsolescence of social housing of Spain's post-war in less favoured urban areas. The case of Zaragoza, Informes de la Construcción 67 (Extra-1) http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/4075/4670.

Littlefair P., (1998) in: Passive solar urban design: ensuring the penetration of solar energy into the city, Renew. Sust. Energy Reviews 2, 303-326, http://www.sciencedirect.com/science/article/pii/S1364032197000099.

Littlefair P. (2001), in: Daylight, sunlight and solar gain in the urban environment, Solar Energy 70 (3), 177-185, http://www.sciencedirect.com/science/article/pii/S0038092X00000992. https://doi.org/10.1016/S0038-092X(00)00099-2

Manzano-Agugliaro F., Montoya F.G., Sabio-Ortega A., García-Cruz A. (2015), in: Review of bioclimatic architecture strategies for achieving thermal comfort, Renew. Sustain. Energy Reviews 49, 736-755, http://www.sciencedirect.com/science/article/pii/S1364032115003652. https://doi.org/10.1016/j.rser.2015.04.095

Martins T.A.L., Adolphe L., Bastos L.E.G., (2014). in: From solar constraints to urban design opportunities: Optimization of built form typologies in a Brazilian tropical city, Energy Build. 76, 43-56, http://www.sciencedirect.com/science/article/pii/S0378778814001704. https://doi.org/10.1016/j.enbuild.2014.02.056

Ordo-ez J. Modi V., (2011). in: Optimizing CO2 emissions from heating and cooling and from the materials used in residential buildings, depending on their geometric characteristics, Build. Environ. 46, 2161-2169, http://www.sciencedirect.com/science/article/pii/S0360132311001326 https://doi.org/10.1016/j.buildenv.2011.04.030

Pacheco-Torres R., López-Alonso M., Martínez G., Ordó-ez J., (2015) in: Efficient design of residential buildings geometry to optimize photovoltaic energy generation and energy demand in a warm Mediterranean climate, Energy Efficiency 8, 65-84. https://link.springer.com/article/10.1007/s12053-014-9275-5

Pérez-Lombard L., Ortiz J., Pout C., (2008) in: A review on buildings energy consumption information, Energy Build. 40, 394-398, http://www.sciencedirect.com/science/article/pii/S0378778807001016. https://doi.org/10.1016/j.enbuild.2007.03.007

Ratti C., Baker N., Steemers K., (2005). in: Energy consumption and urban texture, Energy Build. 37 (7), 762-776, http://www.sciencedirect.com/science/article/pii/S0378778804003391. https://doi.org/10.1016/j.enbuild.2004.10.010

Santamouris M., Asimakopoulos D., (1996). Passive cooling of buildings. James & James, London.

Santin O.G., Itard L., Visscher H., (2009). in: The effect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock, Energy Build. 41 (11), 1223-1232, http://www.sciencedirect.com/science/article/pii/S0378778809001388. https://doi.org/10.1016/j.enbuild.2009.07.002

Serrano-Lanzarote B., Ortega-Madrigal L., García-Prieto-Ruiz A., Soto-Francés L., Soto-Francés V.M., (2016). in: Strategy for the energy renovation of the housing stock in Comunitat Valenciana (Spain), Energy Build. 132, 117-129, http://www.sciencedirect.com/science/article/pii/S037877881630576X. https://doi.org/10.1016/j.enbuild.2016.06.087

Seyfang G., Haxeltine A., (2012). in: Growing grassroots innovations: Exploring the role of community based initiatives in governing sustainable energy transitions. Environment and Planning C: Gov. Pol., 30 381-400. http://journals.sagepub.com/doi/pdf/10.1068/c10222 https://doi.org/10.1068/c10222

Shetabivash H., (2015). in: Investigation of opening position and shape on the natural cross ventilation, Energy Build. 93, 1-15, ttp://www.sciencedirect.com/ science/article/pii/S0378778814011268.

Strategic Management, 24(4) (2012), 407-420. http:// www.tandfonline.com/doi/abs/10.1080/09537325.2012.663964

Vergragt P.J., Brown H.S., in: The challenge of energy retrofitting the residential housing stock: Grassroots innovations and socio-technical system change in Worcester, MA. Technology Analysis

Vermeulen T., Knopf-Lenoir C., Villon P., Beckers B., (2015), in: Urban layout optimization framework to maximize direct solar, Comp. Environ. Urban Systems 51, 1-12, http://www.sciencedirect.com/science/article/pii/S0198971515000137.

Yarke E., (2005). Ventilación natural de edificios. Fundamentos y Métodos de Cálculo para aplicación de Ingenieros y Arquitectos, Nobuko, Buenos Aires

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem