- -

Accelerated crystallization of zeolites via hydroxyl free radicals

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Accelerated crystallization of zeolites via hydroxyl free radicals

Show full item record

Feng, G.; Cheng, P.; Yan, W.; Boronat Zaragoza, M.; Li, X.; Su, J.; Wang, J.... (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science. 351(6278):1188-1191. https://doi.org/10.1126/science.aaf1559

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105837

Files in this item

Item Metadata

Title: Accelerated crystallization of zeolites via hydroxyl free radicals
Author: Feng, G. Cheng, P Yan, W. Boronat Zaragoza, Mercedes Li, X Su, J. Wang, J. Li, Y. Corma Canós, Avelino Xu, R Yu, J.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH-) catalyze the depolymerization of the aluminosilicate gel by breaking the Si, Al-O-Si, Al bonds and catalyze the polymerization of ...[+]
Copyrigths: Cerrado
Source:
Science. (issn: 0036-8075 )
DOI: 10.1126/science.aaf1559
Publisher:
American Association for the Advancement of Science (AAAS)
Publisher version: https://doi.org/10.1126/science.aaf1559
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch/
...[+]
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch/
info:eu-repo/grantAgreement/National Basic Research Program of China//2014CB931802/
info:eu-repo/grantAgreement/National Basic Research Program of China//2013CB921802/
info:eu-repo/grantAgreement/NSFC//21320102001/
info:eu-repo/grantAgreement/NSFC//91122029/
info:eu-repo/grantAgreement/NSFC//21571075/
[-]
Thanks:
This work was supported by the 973 Project (grants 2014CB931802 and 2013CB921802) and the National Natural Science Foundation of China (grants 21320102001, 91122029, and 21571075). A.C. thanks the Program Severo Ochoa for ...[+]
Type: Artículo

References

Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

J. Čejka, A. Corma, S. Zones, Eds., Zeolites and Catalysis-Synthesis, Reactions and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i [+]
Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r

J. Čejka, A. Corma, S. Zones, Eds., Zeolites and Catalysis-Synthesis, Reactions and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2010).

Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i

Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016

Lupulescu, A. I., & Rimer, J. D. (2014). In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization. Science, 344(6185), 729-732. doi:10.1126/science.1250984

R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, 1979).

Xiao, Y., & Lasaga, A. C. (1996). Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis. Geochimica et Cosmochimica Acta, 60(13), 2283-2295. doi:10.1016/0016-7037(96)00101-9

Konecny, R. (2001). Reactivity of Hydroxyl Radicals on Hydroxylated Quartz Surface. 1. Cluster Model Calculations. The Journal of Physical Chemistry B, 105(26), 6221-6226. doi:10.1021/jp010752v

S. Z. Zard, Radical Reactions in Organic Synthesis (Oxford Univ. Press, 2003).

G. Moad, D. H. Solomon, The Chemistry of Radical Polymerization (Elsevier, 2006).

Xu, G., & Chance, M. R. (2007). Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chemical Reviews, 107(8), 3514-3543. doi:10.1021/cr0682047

Buettner, G. R. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biology and Medicine, 3(4), 259-303. doi:10.1016/s0891-5849(87)80033-3

A. Angelo, M. Dante, in Electron Paramagnetic Resonance: A Practitioner’s Toolkit, M. Brustolon, E. Giamello, Eds. (John Wiley & Sons, 2008), vol. 4, pp. 285–324.

Griscom, D. L., Brinker, C. J., & Ashley, C. S. (1987). ESR studies of irradiated 17O-enriched sol-gel silicas. Journal of Non-Crystalline Solids, 92(2-3), 295-301. doi:10.1016/s0022-3093(87)80047-9

Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907c

Warren, W. L., Lenahan, P. M., & Jeffrey Brinker, C. (1991). Experimental evidence for two fundamentally different E′ precursors in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 136(1-2), 151-162. doi:10.1016/0022-3093(91)90130-x

Knight, C. T. G., Balec, R. J., & Kinrade, S. D. (2007). The Structure of Silicate Anions in Aqueous Alkaline Solutions. Angewandte Chemie International Edition, 46(43), 8148-8152. doi:10.1002/anie.200702986

Huang, C.-H., Shan, G.-Q., Mao, L., Kalyanaraman, B., Qin, H., Ren, F.-R., & Zhu, B.-Z. (2013). The first purification and unequivocal characterization of the radical form of the carbon-centered quinone ketoxy radical adduct. Chemical Communications, 49(57), 6436. doi:10.1039/c3cc42732c

M. J. Frisch et al., Gaussian 09 (Gaussian, 2009).

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Petersson, G. A., & Al‐Laham, M. A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. The Journal of Chemical Physics, 94(9), 6081-6090. doi:10.1063/1.460447

Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. Journal of Chemical Theory and Computation, 4(2), 297-306. doi:10.1021/ct700248k

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record