- -

Accelerated crystallization of zeolites via hydroxyl free radicals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accelerated crystallization of zeolites via hydroxyl free radicals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Feng, G. es_ES
dc.contributor.author Cheng, P es_ES
dc.contributor.author Yan, W. es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Li, X es_ES
dc.contributor.author Su, J. es_ES
dc.contributor.author Wang, J. es_ES
dc.contributor.author Li, Y. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Xu, R es_ES
dc.contributor.author Yu, J. es_ES
dc.date.accessioned 2018-07-16T06:52:30Z
dc.date.available 2018-07-16T06:52:30Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0036-8075 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105837
dc.description.abstract [EN] In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH-) catalyze the depolymerization of the aluminosilicate gel by breaking the Si, Al-O-Si, Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si, Al-O-Si, Al bonds. We report that hydroxyl free radicals (center dot OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. es_ES
dc.description.sponsorship This work was supported by the 973 Project (grants 2014CB931802 and 2013CB921802) and the National Natural Science Foundation of China (grants 21320102001, 91122029, and 21571075). A.C. thanks the Program Severo Ochoa for financial support and ERC-AdG-2014-671093-SynCatMatch. J.Y. designed and supervised the project; W.Y., A.C., and R.X. involved the design of the experiments; G.F., P.C., and J.W. performed the experiments; J.-H.S. performed the EPR analyses; M.B., X.L., and Y.L. contributed to the calculations; J.Y. and W.Y. analyzed the data; G.F. wrote the first draft; and J.Y. and W.Y. deeply revised the manuscript. A Chinese patent about the method for UV-assisted synthesis of zeolite materials has been applied for. es_ES
dc.language Inglés es_ES
dc.publisher American Association for the Advancement of Science (AAAS) es_ES
dc.relation.ispartof Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Accelerated crystallization of zeolites via hydroxyl free radicals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1126/science.aaf1559 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/National Basic Research Program of China//2014CB931802/
dc.relation.projectID info:eu-repo/grantAgreement/National Basic Research Program of China//2013CB921802/
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21320102001/
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//91122029/
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//21571075/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Feng, G.; Cheng, P.; Yan, W.; Boronat Zaragoza, M.; Li, X.; Su, J.; Wang, J.... (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science. 351(6278):1188-1191. https://doi.org/10.1126/science.aaf1559 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1126/science.aaf1559 es_ES
dc.description.upvformatpinicio 1188 es_ES
dc.description.upvformatpfin 1191 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 351 es_ES
dc.description.issue 6278 es_ES
dc.relation.pasarela S\328464 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder National Basic Research Program of China
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Research Council
dc.contributor.funder European Commission
dc.description.references Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r es_ES
dc.description.references J. Čejka, A. Corma, S. Zones, Eds., Zeolites and Catalysis-Synthesis, Reactions and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2010). es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 es_ES
dc.description.references Lupulescu, A. I., & Rimer, J. D. (2014). In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization. Science, 344(6185), 729-732. doi:10.1126/science.1250984 es_ES
dc.description.references R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, 1979). es_ES
dc.description.references Xiao, Y., & Lasaga, A. C. (1996). Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis. Geochimica et Cosmochimica Acta, 60(13), 2283-2295. doi:10.1016/0016-7037(96)00101-9 es_ES
dc.description.references Konecny, R. (2001). Reactivity of Hydroxyl Radicals on Hydroxylated Quartz Surface. 1. Cluster Model Calculations. The Journal of Physical Chemistry B, 105(26), 6221-6226. doi:10.1021/jp010752v es_ES
dc.description.references S. Z. Zard, Radical Reactions in Organic Synthesis (Oxford Univ. Press, 2003). es_ES
dc.description.references G. Moad, D. H. Solomon, The Chemistry of Radical Polymerization (Elsevier, 2006). es_ES
dc.description.references Xu, G., & Chance, M. R. (2007). Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chemical Reviews, 107(8), 3514-3543. doi:10.1021/cr0682047 es_ES
dc.description.references Buettner, G. R. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biology and Medicine, 3(4), 259-303. doi:10.1016/s0891-5849(87)80033-3 es_ES
dc.description.references A. Angelo, M. Dante, in Electron Paramagnetic Resonance: A Practitioner’s Toolkit, M. Brustolon, E. Giamello, Eds. (John Wiley & Sons, 2008), vol. 4, pp. 285–324. es_ES
dc.description.references Griscom, D. L., Brinker, C. J., & Ashley, C. S. (1987). ESR studies of irradiated 17O-enriched sol-gel silicas. Journal of Non-Crystalline Solids, 92(2-3), 295-301. doi:10.1016/s0022-3093(87)80047-9 es_ES
dc.description.references Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907c es_ES
dc.description.references Warren, W. L., Lenahan, P. M., & Jeffrey Brinker, C. (1991). Experimental evidence for two fundamentally different E′ precursors in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 136(1-2), 151-162. doi:10.1016/0022-3093(91)90130-x es_ES
dc.description.references Knight, C. T. G., Balec, R. J., & Kinrade, S. D. (2007). The Structure of Silicate Anions in Aqueous Alkaline Solutions. Angewandte Chemie International Edition, 46(43), 8148-8152. doi:10.1002/anie.200702986 es_ES
dc.description.references Huang, C.-H., Shan, G.-Q., Mao, L., Kalyanaraman, B., Qin, H., Ren, F.-R., & Zhu, B.-Z. (2013). The first purification and unequivocal characterization of the radical form of the carbon-centered quinone ketoxy radical adduct. Chemical Communications, 49(57), 6436. doi:10.1039/c3cc42732c es_ES
dc.description.references M. J. Frisch et al., Gaussian 09 (Gaussian, 2009). es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Petersson, G. A., & Al‐Laham, M. A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. The Journal of Chemical Physics, 94(9), 6081-6090. doi:10.1063/1.460447 es_ES
dc.description.references Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. Journal of Chemical Theory and Computation, 4(2), 297-306. doi:10.1021/ct700248k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem