Mostrar el registro sencillo del ítem
dc.contributor.author | Feng, G. | es_ES |
dc.contributor.author | Cheng, P | es_ES |
dc.contributor.author | Yan, W. | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Li, X | es_ES |
dc.contributor.author | Su, J. | es_ES |
dc.contributor.author | Wang, J. | es_ES |
dc.contributor.author | Li, Y. | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Xu, R | es_ES |
dc.contributor.author | Yu, J. | es_ES |
dc.date.accessioned | 2018-07-16T06:52:30Z | |
dc.date.available | 2018-07-16T06:52:30Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0036-8075 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105837 | |
dc.description.abstract | [EN] In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH-) catalyze the depolymerization of the aluminosilicate gel by breaking the Si, Al-O-Si, Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si, Al-O-Si, Al bonds. We report that hydroxyl free radicals (center dot OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. | es_ES |
dc.description.sponsorship | This work was supported by the 973 Project (grants 2014CB931802 and 2013CB921802) and the National Natural Science Foundation of China (grants 21320102001, 91122029, and 21571075). A.C. thanks the Program Severo Ochoa for financial support and ERC-AdG-2014-671093-SynCatMatch. J.Y. designed and supervised the project; W.Y., A.C., and R.X. involved the design of the experiments; G.F., P.C., and J.W. performed the experiments; J.-H.S. performed the EPR analyses; M.B., X.L., and Y.L. contributed to the calculations; J.Y. and W.Y. analyzed the data; G.F. wrote the first draft; and J.Y. and W.Y. deeply revised the manuscript. A Chinese patent about the method for UV-assisted synthesis of zeolite materials has been applied for. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Association for the Advancement of Science (AAAS) | es_ES |
dc.relation.ispartof | Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Accelerated crystallization of zeolites via hydroxyl free radicals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1126/science.aaf1559 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/National Basic Research Program of China//2014CB931802/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/National Basic Research Program of China//2013CB921802/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//21320102001/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//91122029/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/NSFC//21571075/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Feng, G.; Cheng, P.; Yan, W.; Boronat Zaragoza, M.; Li, X.; Su, J.; Wang, J.... (2016). Accelerated crystallization of zeolites via hydroxyl free radicals. Science. 351(6278):1188-1191. https://doi.org/10.1126/science.aaf1559 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1126/science.aaf1559 | es_ES |
dc.description.upvformatpinicio | 1188 | es_ES |
dc.description.upvformatpfin | 1191 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 351 | es_ES |
dc.description.issue | 6278 | es_ES |
dc.relation.pasarela | S\328464 | es_ES |
dc.contributor.funder | National Natural Science Foundation of China | es_ES |
dc.contributor.funder | National Basic Research Program of China | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | European Research Council | |
dc.contributor.funder | European Commission | |
dc.description.references | Li, Y., & Yu, J. (2014). New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews, 114(14), 7268-7316. doi:10.1021/cr500010r | es_ES |
dc.description.references | J. Čejka, A. Corma, S. Zones, Eds., Zeolites and Catalysis-Synthesis, Reactions and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, 2010). | es_ES |
dc.description.references | Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i | es_ES |
dc.description.references | Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 | es_ES |
dc.description.references | Lupulescu, A. I., & Rimer, J. D. (2014). In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization. Science, 344(6185), 729-732. doi:10.1126/science.1250984 | es_ES |
dc.description.references | R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (John Wiley & Sons, 1979). | es_ES |
dc.description.references | Xiao, Y., & Lasaga, A. C. (1996). Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis. Geochimica et Cosmochimica Acta, 60(13), 2283-2295. doi:10.1016/0016-7037(96)00101-9 | es_ES |
dc.description.references | Konecny, R. (2001). Reactivity of Hydroxyl Radicals on Hydroxylated Quartz Surface. 1. Cluster Model Calculations. The Journal of Physical Chemistry B, 105(26), 6221-6226. doi:10.1021/jp010752v | es_ES |
dc.description.references | S. Z. Zard, Radical Reactions in Organic Synthesis (Oxford Univ. Press, 2003). | es_ES |
dc.description.references | G. Moad, D. H. Solomon, The Chemistry of Radical Polymerization (Elsevier, 2006). | es_ES |
dc.description.references | Xu, G., & Chance, M. R. (2007). Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chemical Reviews, 107(8), 3514-3543. doi:10.1021/cr0682047 | es_ES |
dc.description.references | Buettner, G. R. (1987). Spin Trapping: ESR parameters of spin adducts 1474 1528V. Free Radical Biology and Medicine, 3(4), 259-303. doi:10.1016/s0891-5849(87)80033-3 | es_ES |
dc.description.references | A. Angelo, M. Dante, in Electron Paramagnetic Resonance: A Practitioner’s Toolkit, M. Brustolon, E. Giamello, Eds. (John Wiley & Sons, 2008), vol. 4, pp. 285–324. | es_ES |
dc.description.references | Griscom, D. L., Brinker, C. J., & Ashley, C. S. (1987). ESR studies of irradiated 17O-enriched sol-gel silicas. Journal of Non-Crystalline Solids, 92(2-3), 295-301. doi:10.1016/s0022-3093(87)80047-9 | es_ES |
dc.description.references | Zhang, H., Dunphy, D. R., Jiang, X., Meng, H., Sun, B., Tarn, D., … Brinker, C. J. (2012). Processing Pathway Dependence of Amorphous Silica Nanoparticle Toxicity: Colloidal vs Pyrolytic. Journal of the American Chemical Society, 134(38), 15790-15804. doi:10.1021/ja304907c | es_ES |
dc.description.references | Warren, W. L., Lenahan, P. M., & Jeffrey Brinker, C. (1991). Experimental evidence for two fundamentally different E′ precursors in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 136(1-2), 151-162. doi:10.1016/0022-3093(91)90130-x | es_ES |
dc.description.references | Knight, C. T. G., Balec, R. J., & Kinrade, S. D. (2007). The Structure of Silicate Anions in Aqueous Alkaline Solutions. Angewandte Chemie International Edition, 46(43), 8148-8152. doi:10.1002/anie.200702986 | es_ES |
dc.description.references | Huang, C.-H., Shan, G.-Q., Mao, L., Kalyanaraman, B., Qin, H., Ren, F.-R., & Zhu, B.-Z. (2013). The first purification and unequivocal characterization of the radical form of the carbon-centered quinone ketoxy radical adduct. Chemical Communications, 49(57), 6436. doi:10.1039/c3cc42732c | es_ES |
dc.description.references | M. J. Frisch et al., Gaussian 09 (Gaussian, 2009). | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Petersson, G. A., & Al‐Laham, M. A. (1991). A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. The Journal of Chemical Physics, 94(9), 6081-6090. doi:10.1063/1.460447 | es_ES |
dc.description.references | Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. Journal of Chemical Theory and Computation, 4(2), 297-306. doi:10.1021/ct700248k | es_ES |