- -

Invariants for bi-Lipschitz equivalence of ideals

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Invariants for bi-Lipschitz equivalence of ideals

Show full item record

Bivià-Ausina, C.; Fukui, T. (2017). Invariants for bi-Lipschitz equivalence of ideals. The Quarterly Journal of Mathematics. 68(3):791-815. doi:10.1093/qmath/hax002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105845

Files in this item

Item Metadata

Title: Invariants for bi-Lipschitz equivalence of ideals
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We introduce the notion of bi-Lipschitz equivalence of ideals and derive numerical invariants for such equivalence. In particular, we show that the log canonical threshold of ideals is a bi-Lipschitz invariant. We ...[+]
Subjects: Bi-Lipschitz equivalence , Milnor number , Log canonical threshold , Lojasiewicz exponent
Copyrigths: Reserva de todos los derechos
Source:
The Quarterly Journal of Mathematics. (issn: 0033-5606 )
DOI: 10.1093/qmath/hax002
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/qmath/hax002
Thanks:
The first author was partially supported by DGICYT Grant MTM2015-64013-P.
Type: Artículo

This item appears in the following Collection(s)

Show full item record