Mostrar el registro sencillo del ítem
dc.contributor.author | Bivià-Ausina, Carles | es_ES |
dc.contributor.author | Fukui, Toshizumi | es_ES |
dc.date.accessioned | 2018-07-16T06:55:25Z | |
dc.date.available | 2018-07-16T06:55:25Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0033-5606 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105845 | |
dc.description.abstract | [EN] We introduce the notion of bi-Lipschitz equivalence of ideals and derive numerical invariants for such equivalence. In particular, we show that the log canonical threshold of ideals is a bi-Lipschitz invariant. We apply our method to several deformations ft:,0,0 (. n). (.) and show that they are not bi-Lipschitz trivial, specially focusing on several known examples of non-m*-constant deformations. | es_ES |
dc.description.sponsorship | The first author was partially supported by DGICYT Grant MTM2015-64013-P. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press | es_ES |
dc.relation.ispartof | The Quarterly Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Bi-Lipschitz equivalence | es_ES |
dc.subject | Milnor number | es_ES |
dc.subject | Log canonical threshold | es_ES |
dc.subject | Lojasiewicz exponent | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Invariants for bi-Lipschitz equivalence of ideals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1093/qmath/hax002 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-09-30 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bivià-Ausina, C.; Fukui, T. (2017). Invariants for bi-Lipschitz equivalence of ideals. The Quarterly Journal of Mathematics. 68(3):791-815. https://doi.org/10.1093/qmath/hax002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1093/qmath/hax002 | es_ES |
dc.description.upvformatpinicio | 791 | es_ES |
dc.description.upvformatpfin | 815 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 68 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\342618 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |