- -

Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements

Mostrar el registro completo del ítem

Giner-Sanz, JJ.; Ortega Navarro, EM.; Pérez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society. 164(13):H918-H924. https://doi.org/10.1149/2.1451713jes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105893

Ficheros en el ítem

Metadatos del ítem

Título: Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements
Autor: Giner-Sanz, Juan José Ortega Navarro, Emma María Pérez-Herranz, Valentín
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The impedance concept is defined by Ohm's generalized law. Ohm's law requires the fulfilment of 3 conditions in order to be valid: causality, linearity and stability. In general, electrochemical systems are highly ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of The Electrochemical Society. (issn: 0013-4651 )
DOI: 10.1149/2.1451713jes
Editorial:
The Electrochemical Society
Versión del editor: http://dx.doi.org/10.1149/2.1451713jes
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F268/
Agradecimientos:
The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).
Tipo: Artículo

References

Macdonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1376-1388. doi:10.1016/j.electacta.2005.02.107

Orazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, New Jersey (2008).

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135 [+]
Macdonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1376-1388. doi:10.1016/j.electacta.2005.02.107

Orazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, New Jersey (2008).

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135

Cascos, V., Aguadero, A., Harrington, G., Fernández-Díaz, M. T., & Alonso, J. A. (2017). Design of Sr0.7R0.3CoO3-δ(R = Tb and Er) Perovskites Performing as Cathode Materials in Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(10), F3019-F3027. doi:10.1149/2.0031710jes

Pang, S., Wang, W., Su, Y., Shen, X., Wang, Y., Xu, K., & Chen, C. (2017). Synergistic Effect of A-Site Cation Ordered-Disordered Perovskite as a Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(7), F775-F780. doi:10.1149/2.0701707jes

Kiebach, R., Zielke, P., Veltzé, S., Ovtar, S., Xu, Y., Simonsen, S. B., … Küngas, R. (2017). On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes. Journal of The Electrochemical Society, 164(7), F748-F758. doi:10.1149/2.0361707jes

Chen, J., Liu, Q., Wang, B., Li, F., Jiang, H., Liu, K., … Wang, D. (2017). Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries. Journal of The Electrochemical Society, 164(7), A1526-A1533. doi:10.1149/2.0971707jes

Hwang, C., Lee, K., Um, H.-D., Lee, Y., Seo, K., & Song, H.-K. (2017). Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 164(7), A1564-A1568. doi:10.1149/2.1241707jes

Zhang, Y., Chen, F., Yang, D., Zha, W., Li, J., Shen, Q., … Zhang, L. (2017). High Capacity All-Solid-State Lithium Battery Using Cathodes with Three-Dimensional Li+Conductive Network. Journal of The Electrochemical Society, 164(7), A1695-A1702. doi:10.1149/2.1501707jes

Malifarge, S., Delobel, B., & Delacourt, C. (2017). Determination of Tortuosity Using Impedance Spectra Analysis of Symmetric Cell. Journal of The Electrochemical Society, 164(11), E3329-E3334. doi:10.1149/2.0331711jes

Paulraj, A. R., Kiros, Y., Skårman, B., & Vidarsson, H. (2017). Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries. Journal of The Electrochemical Society, 164(7), A1665-A1672. doi:10.1149/2.1431707jes

Stein, M., Mistry, A., & Mukherjee, P. P. (2017). Mechanistic Understanding of the Role of Evaporation in Electrode Processing. Journal of The Electrochemical Society, 164(7), A1616-A1627. doi:10.1149/2.1271707jes

Murbach, M. D., & Schwartz, D. T. (2017). Extending Newman’s Pseudo-Two-Dimensional Lithium-Ion Battery Impedance Simulation Approach to Include the Nonlinear Harmonic Response. Journal of The Electrochemical Society, 164(11), E3311-E3320. doi:10.1149/2.0301711jes

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137

Katić, J., Metikoš-Huković, M., Šarić, I., & Petravić, M. (2017). Electronic Structure and Redox Behavior of Tin Sulfide Films Potentiostatically Formed on Tin. Journal of The Electrochemical Society, 164(7), C383-C389. doi:10.1149/2.0371707jes

Yang, J., Yang, Y., Balaskas, A., & Curioni, M. (2017). Development of a Chromium-Free Post-Anodizing Treatment Based on 2-Mercaptobenzothiazole for Corrosion Protection of AA2024T3. Journal of The Electrochemical Society, 164(7), C376-C382. doi:10.1149/2.1191707jes

Takabatake, Y., Kitagawa, Y., Nakanishi, T., Hasegawa, Y., & Fushimi, K. (2017). Grain Dependency of a Passive Film Formed on Polycrystalline Iron in pH 8.4 Borate Solution. Journal of The Electrochemical Society, 164(7), C349-C355. doi:10.1149/2.1011707jes

Qi, J., Gao, L., Li, Y., Wang, Z., Thompson, G. E., & Skeldon, P. (2017). An Optimized Trivalent Chromium Conversion Coating Process for AA2024-T351 Alloy. Journal of The Electrochemical Society, 164(7), C390-C395. doi:10.1149/2.1371707jes

Zhang, Q., Kercher, A. K., Veith, G. M., Sarbada, V., Brady, A. B., Li, J., … Marschilok, A. C. (2017). Lithium Vanadium Oxide (Li1.1V3O8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry. Journal of The Electrochemical Society, 164(7), A1503-A1513. doi:10.1149/2.0881707jes

Moya, A. A. (2016). Electrochemical Impedance of Ion-Exchange Membranes with Interfacial Charge Transfer Resistances. The Journal of Physical Chemistry C, 120(12), 6543-6552. doi:10.1021/acs.jpcc.5b12087

García-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:•OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jes

Wei, Q., Yan, X., Kang, Z., Zhang, Z., Cao, S., Liu, Y., & Zhang, Y. (2017). Carbon Quantum Dots Decorated C3N4/TiO2Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of The Electrochemical Society, 164(7), H515-H520. doi:10.1149/2.1281707jes

Machado, S., Calaça, G. N., da Silva, J. P., de Araujo, M. P., Boeré, R. T., Pessôa, C. A., & Wohnrath, K. (2017). Electrochemical Characterization of a Carbon Ceramic Electrode Modified with a Ru(II) Arene Complex and Its Application as Voltammetric Sensor for Paracetamol. Journal of The Electrochemical Society, 164(6), B314-B320. doi:10.1149/2.0191707jes

Balasubramanian, P., Thirumalraj, B., Chen, S.-M., & Barathi, P. (2017). Electrochemical Determination of Isoniazid Using Gallic Acid Supported Reduced Graphene Oxide. Journal of The Electrochemical Society, 164(7), H503-H508. doi:10.1149/2.1021707jes

Jiang, J. (2017). High Temperature Monolithic Biochar Supercapacitor Using Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 164(8), H5043-H5048. doi:10.1149/2.0211708jes

Wang, K.-Y., Chiu, Y.-K., & Cheng, H.-C. (2017). Electrochemical Capacitors of Horizontally Aligned Carbon Nanotube Electrodes with Oxygen Plasma Treatment. Journal of The Electrochemical Society, 164(7), A1587-A1594. doi:10.1149/2.1251707jes

Chang, C., Yang, X., Xiang, S., Lin, X., Que, H., & Li, M. (2017). Nitrogen and Sulfur Co-Doped Glucose-Based Porous Carbon Materials with Excellent Electrochemical Performance for Supercapacitors. Journal of The Electrochemical Society, 164(7), A1601-A1607. doi:10.1149/2.1341707jes

Lasia A. , Electrochemical Impedance Spectrscopy and its applications, Springer, London (2014).

Gray M. G. Goodman J. W. , Electrochemical Impedance Spectrscopy and its applications, Springer, New York (1995).

Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005).

Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7

Schönleber, M., Klotz, D., & Ivers-Tiffée, E. (2014). A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests. Electrochimica Acta, 131, 20-27. doi:10.1016/j.electacta.2014.01.034

Garland, J. E., Pettit, C. M., & Roy, D. (2004). Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra. Electrochimica Acta, 49(16), 2623-2635. doi:10.1016/j.electacta.2003.12.051

Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075

Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-l

Darowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-v

Darowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-i

Darowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5

Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2

Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7

Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7

Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-x

Van Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039

Van Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096

Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-p

Kiel, M., Bohlen, O., & Sauer, D. U. (2008). Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochimica Acta, 53(25), 7367-7374. doi:10.1016/j.electacta.2008.01.089

Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016

Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram.com/NonlinearImpedanceOfTafelianElectrochemicalSystems/.

Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157

Kaisare, N. S., Ramani, V., Pushpavanam, K., & Ramanathan, S. (2011). An analysis of drifts and nonlinearities in electrochemical impedance spectra. Electrochimica Acta, 56(22), 7467-7475. doi:10.1016/j.electacta.2011.06.112

Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133

Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007

Hernandez-Jaimes, C., Vazquez-Arenas, J., Vernon-Carter, J., & Alvarez-Ramirez, J. (2015). A nonlinear Cole–Cole model for large-amplitude electrochemical impedance spectroscopy. Chemical Engineering Science, 137, 1-8. doi:10.1016/j.ces.2015.06.015

Yuan X. Z. , Electrochemical impedance spectroscopy in PEM fuel cells. Fundamentals and applications, Springer, London (2010).

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141

Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9

Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479

BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5

Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210

Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522

Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478

Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5

Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252

Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564

Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8

Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059

Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047

Hirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131

Popkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316

Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457

Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133

Kay, S. M., & Marple, S. L. (1981). Spectrum analysis—A modern perspective. Proceedings of the IEEE, 69(11), 1380-1419. doi:10.1109/proc.1981.12184

Yuan, X., Sun, J. C., Blanco, M., Wang, H., Zhang, J., & Wilkinson, D. P. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 920-928. doi:10.1016/j.jpowsour.2006.05.003

Herraiz-Cardona, I., Ortega, E., Vázquez-Gómez, L., & Pérez-Herranz, V. (2011). Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. International Journal of Hydrogen Energy, 36(18), 11578-11587. doi:10.1016/j.ijhydene.2011.06.067

Herraiz-Cardona, I., Ortega, E., & Pérez-Herranz, V. (2011). Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta, 56(3), 1308-1315. doi:10.1016/j.electacta.2010.10.093

Herraiz-Cardona, I., Ortega, E., Antón, J. G., & Pérez-Herranz, V. (2011). Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. International Journal of Hydrogen Energy, 36(16), 9428-9438. doi:10.1016/j.ijhydene.2011.05.047

Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtención de hidrógeno a partir de la electrolisis alcalina del agua, PhD Tesis, Universitat Politècnica de València, Valencia, 2012.

Garcia-Antón J. Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000.

Giner-Sanz, J. J., Ortega, E. M., & Pérez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.106

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem