- -

Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

Show full item record

Hernández-Verón, MA.; Martínez Molada, E.; Teruel-Ferragud, C. (2017). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms. 76(2):309-331. doi:10.1007/s11075-016-0255-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105894

Files in this item

Item Metadata

Title: Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper, we analyze the semilocal convergence of k-steps Newton's method with frozen first derivative in Banach spaces. The method reaches order of convergence k + 1. By imposing only the assumption that the ...[+]
Subjects: Nonlinear equations , Order of convergence , Iterative methods , Semilocal convergence , Conservative systems
Copyrigths: Reserva de todos los derechos
Source:
Numerical Algorithms. (issn: 1017-1398 )
DOI: 10.1007/s11075-016-0255-z
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/s11075-016-0255-z
Type: Artículo

This item appears in the following Collection(s)

Show full item record