- -

Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems

Show simple item record

Files in this item

dc.contributor.author Hernández-Verón, Miguel Angel es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Teruel-Ferragud, Carles es_ES
dc.date.accessioned 2018-07-16T09:11:10Z
dc.date.available 2018-07-16T09:11:10Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1017-1398 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105894
dc.description.abstract [EN] In this paper, we analyze the semilocal convergence of k-steps Newton's method with frozen first derivative in Banach spaces. The method reaches order of convergence k + 1. By imposing only the assumption that the Fr,chet derivative satisfies the Lipschitz continuity, we define appropriate recurrence relations for obtaining the domains of convergence and uniqueness. We also define the accessibility regions for this iterative process in order to guarantee the semilocal convergence and perform a complete study of their efficiency. Our final aim is to apply these theoretical results to solve a special kind of conservative systems. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /MTM2014-52016-C2-2-P es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Order of convergence es_ES
dc.subject Iterative methods es_ES
dc.subject Semilocal convergence es_ES
dc.subject Conservative systems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-016-0255-z es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Hernández-Verón, MA.; Martínez Molada, E.; Teruel-Ferragud, C. (2017). Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems. Numerical Algorithms. 76(2):309-331. doi:10.1007/s11075-016-0255-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11075-016-0255-z es_ES
dc.description.upvformatpinicio 309 es_ES
dc.description.upvformatpfin 331 es_ES
dc.type.version info:eu repo/semantics/publishedVersion es_ES
dc.description.volume 76 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela 354972 es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD es_ES


This item appears in the following Collection(s)

Show simple item record