Ballou, R. H. (2004). Logística: Administración de la cadena de suministro. Pearson Educación.
Ben-Daya, M., & Hariga, M. (2000). Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51(7), 875-881. doi:10.1057/palgrave.jors.2600974
Bomberger, E. E. (1966). A Dynamic Programming Approach to a Lot Size Scheduling Problem. Management Science, 12(11), 778-784. doi:10.1287/mnsc.12.11.778
[+]
Ballou, R. H. (2004). Logística: Administración de la cadena de suministro. Pearson Educación.
Ben-Daya, M., & Hariga, M. (2000). Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51(7), 875-881. doi:10.1057/palgrave.jors.2600974
Bomberger, E. E. (1966). A Dynamic Programming Approach to a Lot Size Scheduling Problem. Management Science, 12(11), 778-784. doi:10.1287/mnsc.12.11.778
Brander, P.; Forsberg, R. (2004). Determination of safety stocks for cyclic schedules with stochastic demands. International Journal of Production Economics, Vol. In Press, Corrected Proof.
Brander, P., Levén, E., & Segerstedt, A. (2005). Lot sizes in a capacity constrained facility—a simulation study of stationary stochastic demand. International Journal of Production Economics, 93-94, 375-386. doi:10.1016/j.ijpe.2004.06.034
Carstensen, P. (1999). Das Economic Lot Scheduling Problem - Überblick und LP-basiertes Verfahren. OR Spectrum, 21(4), 429-460. doi:10.1007/s002910050097
Chandrasekaran, C., Rajendran, C., Chetty, O. V. K., & Hanumanna, D. (2007). Metaheuristics for solving economic lot scheduling problems (ELSP) using time-varying lot-sizes approach. European J. of Industrial Engineering, 1(2), 152. doi:10.1504/ejie.2007.014107
Davis, S. G. (1990). Scheduling Economic Lot Size Production Runs. Management Science, 36(8), 985-998. doi:10.1287/mnsc.36.8.985
Delporte, C. M., & Thomas, L. J. (1977). Lot Sizing and Sequencing forNProducts on One Facility. Management Science, 23(10), 1070-1079. doi:10.1287/mnsc.23.10.1070
Dobson, G. (1987). The Economic Lot-Scheduling Problem: Achieving Feasibility Using Time-Varying Lot Sizes. Operations Research, 35(5), 764-771. doi:10.1287/opre.35.5.764
Doll, C. L., & Whybark, D. C. (1973). An Iterative Procedure for the Single-Machine Multi-Product Lot Scheduling Problem. Management Science, 20(1), 50-55. doi:10.1287/mnsc.20.1.50
Elmaghraby, S. E. (1978). The Economic Lot Scheduling Problem (ELSP): Review and Extensions. Management Science, 24(6), 587-598. doi:10.1287/mnsc.24.6.587
Erlenkotter, D. (1990). Ford Whitman Harris and the Economic Order Quantity Model. Operations Research, 38(6), 937-946. doi:10.1287/opre.38.6.937
Eynan, A. (2003). The Benefits of Flexible Production Rates in the Economic Lot Scheduling Problem. IIE Transactions, 35(11), 1057-1064. doi:10.1080/07408170304400
Gallego, G. (1990). Scheduling the Production of Several Items with Random Demands in a Single Facility. Management Science, 36(12), 1579-1592. doi:10.1287/mnsc.36.12.1579
Gallego, G., & Moon, I. (1992). The Effect of Externalizing Setups in the Economic Lot Scheduling Problem. Operations Research, 40(3), 614-619. doi:10.1287/opre.40.3.614
Gallego, G., & Roundy, R. (1992). The economic lot scheduling problem with finite backorder costs. Naval Research Logistics, 39(5), 729-739. doi:10.1002/1520-6750(199208)39:5<729::aid-nav3220390510>3.0.co;2-n
GALLEGO, G., & SHAW, D. X. (1997). Complexity of the ELSP with general cyclic schedules. IIE Transactions, 29(2), 109-113. doi:10.1080/07408179708966318
GASCON, A., LEACHMAN, R. C., & LEFRANÇOIS, P. (1994). Multi-item, single-machine scheduling problem with stochastic demands: a comparison of heuristics. International Journal of Production Research, 32(3), 583-596. doi:10.1080/00207549408956954
Giri, B. C., Moon, I., & Yun, W. Y. (2003). Scheduling economic lot sizes in deteriorating production systems. Naval Research Logistics, 50(6), 650-661. doi:10.1002/nav.10082
Goyal, S. . (1997). Observation on the economic lot scheduling problem: Theory and practice. International Journal of Production Economics, 50(1), 61. doi:10.1016/s0925-5273(97)00025-x
Haessler, R. W. (1979). An Improved Extended Basic Period Procedure for Solving the Economic Lot Scheduling Problem. A I I E Transactions, 11(4), 336-340. doi:10.1080/05695557908974480
Haessler, R. W., & Hogue, S. L. (1976). Note—A Note on the Single-Machine Multi-Product Lot Scheduling Problem. Management Science, 22(8), 909-912. doi:10.1287/mnsc.22.8.909
Hahm, J., & Yano, C. A. (1995). The Economic Lot and Delivery Scheduling Problem: Powers of Two Policies. Transportation Science, 29(3), 222-241. doi:10.1287/trsc.29.3.222
Hanssmann, F. (1962). Operations-Research in Production and Inventory Control. J. Wiley.
Harris, F. W. (1913). How many parts to make an once. Factory, The Magazine of Management, Vol. 10, nº. 2, pp. 135-6-152.
Hsu, W.-L. (1983). On the General Feasibility Test of Scheduling Lot Sizes for Several Products on One Machine. Management Science, 29(1), 93-105. doi:10.1287/mnsc.29.1.93
HWANG, H., KIM, D. B., & KIM, Y. D. (1993). Multiproduct economic lot size models with investment costs for setup reduction and quality improvement. International Journal of Production Research, 31(3), 691-703. doi:10.1080/00207549308956751
JONES, P. C., & INMAN, R. R. (1989). When Is The Economic Lot Scheduling Problem Easy? IIE Transactions, 21(1), 11-20. doi:10.1080/07408178908966202
Khouja, M., Michalewicz, Z., & Wilmot, M. (1998). The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research, 110(3), 509-524. doi:10.1016/s0377-2217(97)00270-1
Khoury, B. N., Abboud, N. E., & Tannous, M. M. (2001). The common cycle approach to the ELSP problem with insufficient capacity. International Journal of Production Economics, 73(2), 189-199. doi:10.1016/s0925-5273(00)00175-4
Larrañeta, J., & Onieva, L. (1988). The Economic Lot-Scheduling Problem: A Simple Approach. Journal of the Operational Research Society, 39(4), 373-379. doi:10.1057/jors.1988.65
Leachman, R. C., & Gascon, A. (1988). A Heuristic Scheduling Policy for Multi-Item, Single-Machine Production Systems with Time-Varying, Stochastic Demands. Management Science, 34(3), 377-390. doi:10.1287/mnsc.34.3.377
Madigan, J. G. (1968). Scheduling a Multi-Product Single Machine System for an Infinite Planning Period. Management Science, 14(11), 713-719. doi:10.1287/mnsc.14.11.713
Maxwell, W. L. (1964). The scheduling of economic lot sizes. Naval Research Logistics Quarterly, 11(2), 89-124. doi:10.1002/nav.3800110202
Moon, I., Giri, B. C., & Choi, K. (2002). Economic lot scheduling problem with imperfect production processes and setup times. Journal of the Operational Research Society, 53(6), 620-629. doi:10.1057/palgrave.jors.2601350
Moon, I., Silver, E. A., & Choi, S. (2002). Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research, 40(4), 809-824. doi:10.1080/00207540110095222
MOON, I., HAHM, J., & LEE, C. (1998). The effect of the stabilization period on the economic lot scheduling problem. IIE Transactions, 30(11), 1009-1017. doi:10.1080/07408179808966557
Öner, S., & Bilgiç, T. (2008). Economic lot scheduling with uncontrolled co-production. European Journal of Operational Research, 188(3), 793-810. doi:10.1016/j.ejor.2007.05.016
Schweitzer, P. J., & Silver, E. A. (1983). Technical Note—Mathematical Pitfalls in the One Machine Multiproduct Economic Lot Scheduling Problem. Operations Research, 31(2), 401-405. doi:10.1287/opre.31.2.401
Segerstedt, A. (1999). Lot sizes in a capacity constrained facility with available initial inventories. International Journal of Production Economics, 59(1-3), 469-475. doi:10.1016/s0925-5273(98)00111-x
Soman, C. A., Pieter van Donk, D., & Gaalman, G. (2006). Comparison of dynamic scheduling policies for hybrid make-to-order and make-to-stock production systems with stochastic demand. International Journal of Production Economics, 104(2), 441-453. doi:10.1016/j.ijpe.2004.08.002
Soman, C. A., van Donk, D. P., & Gaalman, G. (2004). Combined make-to-order and make-to-stock in a food production system. International Journal of Production Economics, 90(2), 223-235. doi:10.1016/s0925-5273(02)00376-6
Soman, C. A., van Donk, D. P., & Gaalman, G. J. C. (2007). Capacitated planning and scheduling for combined make-to-order and make-to-stock production in the food industry: An illustrative case study. International Journal of Production Economics, 108(1-2), 191-199. doi:10.1016/j.ijpe.2006.12.042
Stankard, M. F.; Gupta, S. K. (1969). A note on Bomberger's approach to lot size scheduling: Heuristic proposed. Management Science Series A-Theory, Vol. 15, nº. 7, pp. 449-452.
Sun, H., Huang, H.-C., & Jaruphongsa, W. (2009). The economic lot scheduling problem under extended basic period and power-of-two policy. Optimization Letters, 4(2), 157-172. doi:10.1007/s11590-009-0154-5
Tunasar, C.; Rajgopal, J. (1996). An evolutionary computation approach to the economic lot scheduling problem Deparment of Industrial Engineering, University of Pittsburgh, Pittsburgh.
Vergin, R. C.; Lee, T. N. (1978). Scheduling Rules for Multiple Product Single Machine System with Stochastic Demand. Infor, Vol. 16, nº. 1, pp. 64-73.
Wilson, R. H. (1934). A scientific routine for stock control. Harvard Business Review, Vol. 13, nº. 1, pp. 116-128.
Yao, M. J. & Chang, Y. J. (2009). Solving the economic lot scheduling problem with multiple facilities in parallel using the time-varying lot sizes approach, in Eighth International Conference on Information and Management Sciences, p. F224.
Zipkin, P. H. (1991). Computing Optimal Lot Sizes in the Economic Lot Scheduling Problem. Operations Research, 39(1), 56-63. doi:10.1287/opre.39.1.56
[-]