Mostrar el registro sencillo del ítem
dc.contributor.author | Vidal Carreras, Pilar Isabel | |
dc.date.accessioned | 2011-03-25T10:32:42Z | |
dc.date.available | 2011-03-25T10:32:42Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://hdl.handle.net/10251/10593 | |
dc.description.abstract | [ES] En este trabajo se pretende realizar una recopilación de los enfoques planteados en la literatura para la resolución del problema de Programación del Lote Económico, esto es, ELSP. Estos métodos son: Solución Independiente, Ciclo Común, Periodo Básico, Periodo Básico Extendido y Variación del Tamaño de Lote. Para cada una de las aproximaciones de solución se plantea a quien son atribuidas, el correspondiente modelo, así como una serie de referencias que lo han empleado. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado gracias a la financiación de la Universidad Politécnica de Valencia, a través del proyecto PAID-05-09-4335 "Coordinación de flujos de materiales e información en sistemas distribuidos de producción". | |
dc.language | Español | es_ES |
dc.publisher | ROGLE - Departamento de Organización de Empresas - Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Working Papers on Operations Management | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Elsp | es_ES |
dc.subject | Revisión de la literatura | es_ES |
dc.title | Enfoques para la Resolución del Problema ELSP | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2011-03-25T10:21:58Z | |
dc.identifier.doi | 10.4995/wpom.v1i2.787 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-09-4335/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Vidal Carreras, PI. (2010). Enfoques para la Resolución del Problema ELSP. Working Papers on Operations Management. 1(2):31-43. https://doi.org/10.4995/wpom.v1i2.787 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wpom.v1i2.787 | |
dc.description.upvformatpinicio | 31 | |
dc.description.upvformatpfin | 43 | |
dc.description.volume | 1 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-9068 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Ballou, R. H. (2004). Logística: Administración de la cadena de suministro. Pearson Educación. | es_ES |
dc.description.references | Ben-Daya, M., & Hariga, M. (2000). Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51(7), 875-881. doi:10.1057/palgrave.jors.2600974 | es_ES |
dc.description.references | Bomberger, E. E. (1966). A Dynamic Programming Approach to a Lot Size Scheduling Problem. Management Science, 12(11), 778-784. doi:10.1287/mnsc.12.11.778 | es_ES |
dc.description.references | Brander, P.; Forsberg, R. (2004). Determination of safety stocks for cyclic schedules with stochastic demands. International Journal of Production Economics, Vol. In Press, Corrected Proof. | es_ES |
dc.description.references | Brander, P., Levén, E., & Segerstedt, A. (2005). Lot sizes in a capacity constrained facility—a simulation study of stationary stochastic demand. International Journal of Production Economics, 93-94, 375-386. doi:10.1016/j.ijpe.2004.06.034 | es_ES |
dc.description.references | Carstensen, P. (1999). Das Economic Lot Scheduling Problem - Überblick und LP-basiertes Verfahren. OR Spectrum, 21(4), 429-460. doi:10.1007/s002910050097 | es_ES |
dc.description.references | Chandrasekaran, C., Rajendran, C., Chetty, O. V. K., & Hanumanna, D. (2007). Metaheuristics for solving economic lot scheduling problems (ELSP) using time-varying lot-sizes approach. European J. of Industrial Engineering, 1(2), 152. doi:10.1504/ejie.2007.014107 | es_ES |
dc.description.references | Davis, S. G. (1990). Scheduling Economic Lot Size Production Runs. Management Science, 36(8), 985-998. doi:10.1287/mnsc.36.8.985 | es_ES |
dc.description.references | Delporte, C. M., & Thomas, L. J. (1977). Lot Sizing and Sequencing forNProducts on One Facility. Management Science, 23(10), 1070-1079. doi:10.1287/mnsc.23.10.1070 | es_ES |
dc.description.references | Dobson, G. (1987). The Economic Lot-Scheduling Problem: Achieving Feasibility Using Time-Varying Lot Sizes. Operations Research, 35(5), 764-771. doi:10.1287/opre.35.5.764 | es_ES |
dc.description.references | Doll, C. L., & Whybark, D. C. (1973). An Iterative Procedure for the Single-Machine Multi-Product Lot Scheduling Problem. Management Science, 20(1), 50-55. doi:10.1287/mnsc.20.1.50 | es_ES |
dc.description.references | Elmaghraby, S. E. (1978). The Economic Lot Scheduling Problem (ELSP): Review and Extensions. Management Science, 24(6), 587-598. doi:10.1287/mnsc.24.6.587 | es_ES |
dc.description.references | Erlenkotter, D. (1990). Ford Whitman Harris and the Economic Order Quantity Model. Operations Research, 38(6), 937-946. doi:10.1287/opre.38.6.937 | es_ES |
dc.description.references | Eynan, A. (2003). The Benefits of Flexible Production Rates in the Economic Lot Scheduling Problem. IIE Transactions, 35(11), 1057-1064. doi:10.1080/07408170304400 | es_ES |
dc.description.references | Gallego, G. (1990). Scheduling the Production of Several Items with Random Demands in a Single Facility. Management Science, 36(12), 1579-1592. doi:10.1287/mnsc.36.12.1579 | es_ES |
dc.description.references | Gallego, G., & Moon, I. (1992). The Effect of Externalizing Setups in the Economic Lot Scheduling Problem. Operations Research, 40(3), 614-619. doi:10.1287/opre.40.3.614 | es_ES |
dc.description.references | Gallego, G., & Roundy, R. (1992). The economic lot scheduling problem with finite backorder costs. Naval Research Logistics, 39(5), 729-739. doi:10.1002/1520-6750(199208)39:5<729::aid-nav3220390510>3.0.co;2-n | es_ES |
dc.description.references | GALLEGO, G., & SHAW, D. X. (1997). Complexity of the ELSP with general cyclic schedules. IIE Transactions, 29(2), 109-113. doi:10.1080/07408179708966318 | es_ES |
dc.description.references | GASCON, A., LEACHMAN, R. C., & LEFRANÇOIS, P. (1994). Multi-item, single-machine scheduling problem with stochastic demands: a comparison of heuristics. International Journal of Production Research, 32(3), 583-596. doi:10.1080/00207549408956954 | es_ES |
dc.description.references | Giri, B. C., Moon, I., & Yun, W. Y. (2003). Scheduling economic lot sizes in deteriorating production systems. Naval Research Logistics, 50(6), 650-661. doi:10.1002/nav.10082 | es_ES |
dc.description.references | Goyal, S. . (1997). Observation on the economic lot scheduling problem: Theory and practice. International Journal of Production Economics, 50(1), 61. doi:10.1016/s0925-5273(97)00025-x | es_ES |
dc.description.references | Haessler, R. W. (1979). An Improved Extended Basic Period Procedure for Solving the Economic Lot Scheduling Problem. A I I E Transactions, 11(4), 336-340. doi:10.1080/05695557908974480 | es_ES |
dc.description.references | Haessler, R. W., & Hogue, S. L. (1976). Note—A Note on the Single-Machine Multi-Product Lot Scheduling Problem. Management Science, 22(8), 909-912. doi:10.1287/mnsc.22.8.909 | es_ES |
dc.description.references | Hahm, J., & Yano, C. A. (1995). The Economic Lot and Delivery Scheduling Problem: Powers of Two Policies. Transportation Science, 29(3), 222-241. doi:10.1287/trsc.29.3.222 | es_ES |
dc.description.references | Hanssmann, F. (1962). Operations-Research in Production and Inventory Control. J. Wiley. | es_ES |
dc.description.references | Harris, F. W. (1913). How many parts to make an once. Factory, The Magazine of Management, Vol. 10, nº. 2, pp. 135-6-152. | es_ES |
dc.description.references | Hsu, W.-L. (1983). On the General Feasibility Test of Scheduling Lot Sizes for Several Products on One Machine. Management Science, 29(1), 93-105. doi:10.1287/mnsc.29.1.93 | es_ES |
dc.description.references | HWANG, H., KIM, D. B., & KIM, Y. D. (1993). Multiproduct economic lot size models with investment costs for setup reduction and quality improvement. International Journal of Production Research, 31(3), 691-703. doi:10.1080/00207549308956751 | es_ES |
dc.description.references | JONES, P. C., & INMAN, R. R. (1989). When Is The Economic Lot Scheduling Problem Easy? IIE Transactions, 21(1), 11-20. doi:10.1080/07408178908966202 | es_ES |
dc.description.references | Khouja, M., Michalewicz, Z., & Wilmot, M. (1998). The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research, 110(3), 509-524. doi:10.1016/s0377-2217(97)00270-1 | es_ES |
dc.description.references | Khoury, B. N., Abboud, N. E., & Tannous, M. M. (2001). The common cycle approach to the ELSP problem with insufficient capacity. International Journal of Production Economics, 73(2), 189-199. doi:10.1016/s0925-5273(00)00175-4 | es_ES |
dc.description.references | Larrañeta, J., & Onieva, L. (1988). The Economic Lot-Scheduling Problem: A Simple Approach. Journal of the Operational Research Society, 39(4), 373-379. doi:10.1057/jors.1988.65 | es_ES |
dc.description.references | Leachman, R. C., & Gascon, A. (1988). A Heuristic Scheduling Policy for Multi-Item, Single-Machine Production Systems with Time-Varying, Stochastic Demands. Management Science, 34(3), 377-390. doi:10.1287/mnsc.34.3.377 | es_ES |
dc.description.references | Madigan, J. G. (1968). Scheduling a Multi-Product Single Machine System for an Infinite Planning Period. Management Science, 14(11), 713-719. doi:10.1287/mnsc.14.11.713 | es_ES |
dc.description.references | Maxwell, W. L. (1964). The scheduling of economic lot sizes. Naval Research Logistics Quarterly, 11(2), 89-124. doi:10.1002/nav.3800110202 | es_ES |
dc.description.references | Moon, I., Giri, B. C., & Choi, K. (2002). Economic lot scheduling problem with imperfect production processes and setup times. Journal of the Operational Research Society, 53(6), 620-629. doi:10.1057/palgrave.jors.2601350 | es_ES |
dc.description.references | Moon, I., Silver, E. A., & Choi, S. (2002). Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research, 40(4), 809-824. doi:10.1080/00207540110095222 | es_ES |
dc.description.references | MOON, I., HAHM, J., & LEE, C. (1998). The effect of the stabilization period on the economic lot scheduling problem. IIE Transactions, 30(11), 1009-1017. doi:10.1080/07408179808966557 | es_ES |
dc.description.references | Öner, S., & Bilgiç, T. (2008). Economic lot scheduling with uncontrolled co-production. European Journal of Operational Research, 188(3), 793-810. doi:10.1016/j.ejor.2007.05.016 | es_ES |
dc.description.references | Schweitzer, P. J., & Silver, E. A. (1983). Technical Note—Mathematical Pitfalls in the One Machine Multiproduct Economic Lot Scheduling Problem. Operations Research, 31(2), 401-405. doi:10.1287/opre.31.2.401 | es_ES |
dc.description.references | Segerstedt, A. (1999). Lot sizes in a capacity constrained facility with available initial inventories. International Journal of Production Economics, 59(1-3), 469-475. doi:10.1016/s0925-5273(98)00111-x | es_ES |
dc.description.references | Soman, C. A., Pieter van Donk, D., & Gaalman, G. (2006). Comparison of dynamic scheduling policies for hybrid make-to-order and make-to-stock production systems with stochastic demand. International Journal of Production Economics, 104(2), 441-453. doi:10.1016/j.ijpe.2004.08.002 | es_ES |
dc.description.references | Soman, C. A., van Donk, D. P., & Gaalman, G. (2004). Combined make-to-order and make-to-stock in a food production system. International Journal of Production Economics, 90(2), 223-235. doi:10.1016/s0925-5273(02)00376-6 | es_ES |
dc.description.references | Soman, C. A., van Donk, D. P., & Gaalman, G. J. C. (2007). Capacitated planning and scheduling for combined make-to-order and make-to-stock production in the food industry: An illustrative case study. International Journal of Production Economics, 108(1-2), 191-199. doi:10.1016/j.ijpe.2006.12.042 | es_ES |
dc.description.references | Stankard, M. F.; Gupta, S. K. (1969). A note on Bomberger's approach to lot size scheduling: Heuristic proposed. Management Science Series A-Theory, Vol. 15, nº. 7, pp. 449-452. | es_ES |
dc.description.references | Sun, H., Huang, H.-C., & Jaruphongsa, W. (2009). The economic lot scheduling problem under extended basic period and power-of-two policy. Optimization Letters, 4(2), 157-172. doi:10.1007/s11590-009-0154-5 | es_ES |
dc.description.references | Tunasar, C.; Rajgopal, J. (1996). An evolutionary computation approach to the economic lot scheduling problem Deparment of Industrial Engineering, University of Pittsburgh, Pittsburgh. | es_ES |
dc.description.references | Vergin, R. C.; Lee, T. N. (1978). Scheduling Rules for Multiple Product Single Machine System with Stochastic Demand. Infor, Vol. 16, nº. 1, pp. 64-73. | es_ES |
dc.description.references | Wilson, R. H. (1934). A scientific routine for stock control. Harvard Business Review, Vol. 13, nº. 1, pp. 116-128. | es_ES |
dc.description.references | Yao, M. J. & Chang, Y. J. (2009). Solving the economic lot scheduling problem with multiple facilities in parallel using the time-varying lot sizes approach, in Eighth International Conference on Information and Management Sciences, p. F224. | es_ES |
dc.description.references | Zipkin, P. H. (1991). Computing Optimal Lot Sizes in the Economic Lot Scheduling Problem. Operations Research, 39(1), 56-63. doi:10.1287/opre.39.1.56 | es_ES |