- -

Enfoques para la Resolución del Problema ELSP

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enfoques para la Resolución del Problema ELSP

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidal Carreras, Pilar Isabel
dc.date.accessioned 2011-03-25T10:32:42Z
dc.date.available 2011-03-25T10:32:42Z
dc.date.issued 2010
dc.identifier.uri http://hdl.handle.net/10251/10593
dc.description.abstract [ES] En este trabajo se pretende realizar una recopilación de los enfoques planteados en la literatura para la resolución del problema de Programación del Lote Económico, esto es, ELSP. Estos métodos son: Solución Independiente, Ciclo Común, Periodo Básico, Periodo Básico Extendido y Variación del Tamaño de Lote. Para cada una de las aproximaciones de solución se plantea a quien son atribuidas, el correspondiente modelo, así como una serie de referencias que lo han empleado. es_ES
dc.description.sponsorship Este trabajo ha sido realizado gracias a la financiación de la Universidad Politécnica de Valencia, a través del proyecto PAID-05-09-4335 "Coordinación de flujos de materiales e información en sistemas distribuidos de producción".
dc.language Español es_ES
dc.publisher ROGLE - Departamento de Organización de Empresas - Universitat Politècnica de València es_ES
dc.relation.ispartof Working Papers on Operations Management
dc.rights Reserva de todos los derechos es_ES
dc.subject Elsp es_ES
dc.subject Revisión de la literatura es_ES
dc.title Enfoques para la Resolución del Problema ELSP es_ES
dc.type Artículo es_ES
dc.date.updated 2011-03-25T10:21:58Z
dc.identifier.doi 10.4995/wpom.v1i2.787
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-09-4335/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Vidal Carreras, PI. (2010). Enfoques para la Resolución del Problema ELSP. Working Papers on Operations Management. 1(2):31-43. https://doi.org/10.4995/wpom.v1i2.787 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/wpom.v1i2.787
dc.description.upvformatpinicio 31
dc.description.upvformatpfin 43
dc.description.volume 1
dc.description.issue 2
dc.identifier.eissn 1989-9068
dc.contributor.funder Universitat Politècnica de València
dc.description.references Ballou, R. H. (2004). Logística: Administración de la cadena de suministro. Pearson Educación. es_ES
dc.description.references Ben-Daya, M., & Hariga, M. (2000). Economic lot scheduling problem with imperfect production processes. Journal of the Operational Research Society, 51(7), 875-881. doi:10.1057/palgrave.jors.2600974 es_ES
dc.description.references Bomberger, E. E. (1966). A Dynamic Programming Approach to a Lot Size Scheduling Problem. Management Science, 12(11), 778-784. doi:10.1287/mnsc.12.11.778 es_ES
dc.description.references Brander, P.; Forsberg, R. (2004). Determination of safety stocks for cyclic schedules with stochastic demands. International Journal of Production Economics, Vol. In Press, Corrected Proof. es_ES
dc.description.references Brander, P., Levén, E., & Segerstedt, A. (2005). Lot sizes in a capacity constrained facility—a simulation study of stationary stochastic demand. International Journal of Production Economics, 93-94, 375-386. doi:10.1016/j.ijpe.2004.06.034 es_ES
dc.description.references Carstensen, P. (1999). Das Economic Lot Scheduling Problem - Überblick und LP-basiertes Verfahren. OR Spectrum, 21(4), 429-460. doi:10.1007/s002910050097 es_ES
dc.description.references Chandrasekaran, C., Rajendran, C., Chetty, O. V. K., & Hanumanna, D. (2007). Metaheuristics for solving economic lot scheduling problems (ELSP) using time-varying lot-sizes approach. European J. of Industrial Engineering, 1(2), 152. doi:10.1504/ejie.2007.014107 es_ES
dc.description.references Davis, S. G. (1990). Scheduling Economic Lot Size Production Runs. Management Science, 36(8), 985-998. doi:10.1287/mnsc.36.8.985 es_ES
dc.description.references Delporte, C. M., & Thomas, L. J. (1977). Lot Sizing and Sequencing forNProducts on One Facility. Management Science, 23(10), 1070-1079. doi:10.1287/mnsc.23.10.1070 es_ES
dc.description.references Dobson, G. (1987). The Economic Lot-Scheduling Problem: Achieving Feasibility Using Time-Varying Lot Sizes. Operations Research, 35(5), 764-771. doi:10.1287/opre.35.5.764 es_ES
dc.description.references Doll, C. L., & Whybark, D. C. (1973). An Iterative Procedure for the Single-Machine Multi-Product Lot Scheduling Problem. Management Science, 20(1), 50-55. doi:10.1287/mnsc.20.1.50 es_ES
dc.description.references Elmaghraby, S. E. (1978). The Economic Lot Scheduling Problem (ELSP): Review and Extensions. Management Science, 24(6), 587-598. doi:10.1287/mnsc.24.6.587 es_ES
dc.description.references Erlenkotter, D. (1990). Ford Whitman Harris and the Economic Order Quantity Model. Operations Research, 38(6), 937-946. doi:10.1287/opre.38.6.937 es_ES
dc.description.references Eynan, A. (2003). The Benefits of Flexible Production Rates in the Economic Lot Scheduling Problem. IIE Transactions, 35(11), 1057-1064. doi:10.1080/07408170304400 es_ES
dc.description.references Gallego, G. (1990). Scheduling the Production of Several Items with Random Demands in a Single Facility. Management Science, 36(12), 1579-1592. doi:10.1287/mnsc.36.12.1579 es_ES
dc.description.references Gallego, G., & Moon, I. (1992). The Effect of Externalizing Setups in the Economic Lot Scheduling Problem. Operations Research, 40(3), 614-619. doi:10.1287/opre.40.3.614 es_ES
dc.description.references Gallego, G., & Roundy, R. (1992). The economic lot scheduling problem with finite backorder costs. Naval Research Logistics, 39(5), 729-739. doi:10.1002/1520-6750(199208)39:5<729::aid-nav3220390510>3.0.co;2-n es_ES
dc.description.references GALLEGO, G., & SHAW, D. X. (1997). Complexity of the ELSP with general cyclic schedules. IIE Transactions, 29(2), 109-113. doi:10.1080/07408179708966318 es_ES
dc.description.references GASCON, A., LEACHMAN, R. C., & LEFRANÇOIS, P. (1994). Multi-item, single-machine scheduling problem with stochastic demands: a comparison of heuristics. International Journal of Production Research, 32(3), 583-596. doi:10.1080/00207549408956954 es_ES
dc.description.references Giri, B. C., Moon, I., & Yun, W. Y. (2003). Scheduling economic lot sizes in deteriorating production systems. Naval Research Logistics, 50(6), 650-661. doi:10.1002/nav.10082 es_ES
dc.description.references Goyal, S. . (1997). Observation on the economic lot scheduling problem: Theory and practice. International Journal of Production Economics, 50(1), 61. doi:10.1016/s0925-5273(97)00025-x es_ES
dc.description.references Haessler, R. W. (1979). An Improved Extended Basic Period Procedure for Solving the Economic Lot Scheduling Problem. A I I E Transactions, 11(4), 336-340. doi:10.1080/05695557908974480 es_ES
dc.description.references Haessler, R. W., & Hogue, S. L. (1976). Note—A Note on the Single-Machine Multi-Product Lot Scheduling Problem. Management Science, 22(8), 909-912. doi:10.1287/mnsc.22.8.909 es_ES
dc.description.references Hahm, J., & Yano, C. A. (1995). The Economic Lot and Delivery Scheduling Problem: Powers of Two Policies. Transportation Science, 29(3), 222-241. doi:10.1287/trsc.29.3.222 es_ES
dc.description.references Hanssmann, F. (1962). Operations-Research in Production and Inventory Control. J. Wiley. es_ES
dc.description.references Harris, F. W. (1913). How many parts to make an once. Factory, The Magazine of Management, Vol. 10, nº. 2, pp. 135-6-152. es_ES
dc.description.references Hsu, W.-L. (1983). On the General Feasibility Test of Scheduling Lot Sizes for Several Products on One Machine. Management Science, 29(1), 93-105. doi:10.1287/mnsc.29.1.93 es_ES
dc.description.references HWANG, H., KIM, D. B., & KIM, Y. D. (1993). Multiproduct economic lot size models with investment costs for setup reduction and quality improvement. International Journal of Production Research, 31(3), 691-703. doi:10.1080/00207549308956751 es_ES
dc.description.references JONES, P. C., & INMAN, R. R. (1989). When Is The Economic Lot Scheduling Problem Easy? IIE Transactions, 21(1), 11-20. doi:10.1080/07408178908966202 es_ES
dc.description.references Khouja, M., Michalewicz, Z., & Wilmot, M. (1998). The use of genetic algorithms to solve the economic lot size scheduling problem. European Journal of Operational Research, 110(3), 509-524. doi:10.1016/s0377-2217(97)00270-1 es_ES
dc.description.references Khoury, B. N., Abboud, N. E., & Tannous, M. M. (2001). The common cycle approach to the ELSP problem with insufficient capacity. International Journal of Production Economics, 73(2), 189-199. doi:10.1016/s0925-5273(00)00175-4 es_ES
dc.description.references Larrañeta, J., & Onieva, L. (1988). The Economic Lot-Scheduling Problem: A Simple Approach. Journal of the Operational Research Society, 39(4), 373-379. doi:10.1057/jors.1988.65 es_ES
dc.description.references Leachman, R. C., & Gascon, A. (1988). A Heuristic Scheduling Policy for Multi-Item, Single-Machine Production Systems with Time-Varying, Stochastic Demands. Management Science, 34(3), 377-390. doi:10.1287/mnsc.34.3.377 es_ES
dc.description.references Madigan, J. G. (1968). Scheduling a Multi-Product Single Machine System for an Infinite Planning Period. Management Science, 14(11), 713-719. doi:10.1287/mnsc.14.11.713 es_ES
dc.description.references Maxwell, W. L. (1964). The scheduling of economic lot sizes. Naval Research Logistics Quarterly, 11(2), 89-124. doi:10.1002/nav.3800110202 es_ES
dc.description.references Moon, I., Giri, B. C., & Choi, K. (2002). Economic lot scheduling problem with imperfect production processes and setup times. Journal of the Operational Research Society, 53(6), 620-629. doi:10.1057/palgrave.jors.2601350 es_ES
dc.description.references Moon, I., Silver, E. A., & Choi, S. (2002). Hybrid genetic algorithm for the economic lot-scheduling problem. International Journal of Production Research, 40(4), 809-824. doi:10.1080/00207540110095222 es_ES
dc.description.references MOON, I., HAHM, J., & LEE, C. (1998). The effect of the stabilization period on the economic lot scheduling problem. IIE Transactions, 30(11), 1009-1017. doi:10.1080/07408179808966557 es_ES
dc.description.references Öner, S., & Bilgiç, T. (2008). Economic lot scheduling with uncontrolled co-production. European Journal of Operational Research, 188(3), 793-810. doi:10.1016/j.ejor.2007.05.016 es_ES
dc.description.references Schweitzer, P. J., & Silver, E. A. (1983). Technical Note—Mathematical Pitfalls in the One Machine Multiproduct Economic Lot Scheduling Problem. Operations Research, 31(2), 401-405. doi:10.1287/opre.31.2.401 es_ES
dc.description.references Segerstedt, A. (1999). Lot sizes in a capacity constrained facility with available initial inventories. International Journal of Production Economics, 59(1-3), 469-475. doi:10.1016/s0925-5273(98)00111-x es_ES
dc.description.references Soman, C. A., Pieter van Donk, D., & Gaalman, G. (2006). Comparison of dynamic scheduling policies for hybrid make-to-order and make-to-stock production systems with stochastic demand. International Journal of Production Economics, 104(2), 441-453. doi:10.1016/j.ijpe.2004.08.002 es_ES
dc.description.references Soman, C. A., van Donk, D. P., & Gaalman, G. (2004). Combined make-to-order and make-to-stock in a food production system. International Journal of Production Economics, 90(2), 223-235. doi:10.1016/s0925-5273(02)00376-6 es_ES
dc.description.references Soman, C. A., van Donk, D. P., & Gaalman, G. J. C. (2007). Capacitated planning and scheduling for combined make-to-order and make-to-stock production in the food industry: An illustrative case study. International Journal of Production Economics, 108(1-2), 191-199. doi:10.1016/j.ijpe.2006.12.042 es_ES
dc.description.references Stankard, M. F.; Gupta, S. K. (1969). A note on Bomberger's approach to lot size scheduling: Heuristic proposed. Management Science Series A-Theory, Vol. 15, nº. 7, pp. 449-452. es_ES
dc.description.references Sun, H., Huang, H.-C., & Jaruphongsa, W. (2009). The economic lot scheduling problem under extended basic period and power-of-two policy. Optimization Letters, 4(2), 157-172. doi:10.1007/s11590-009-0154-5 es_ES
dc.description.references Tunasar, C.; Rajgopal, J. (1996). An evolutionary computation approach to the economic lot scheduling problem Deparment of Industrial Engineering, University of Pittsburgh, Pittsburgh. es_ES
dc.description.references Vergin, R. C.; Lee, T. N. (1978). Scheduling Rules for Multiple Product Single Machine System with Stochastic Demand. Infor, Vol. 16, nº. 1, pp. 64-73. es_ES
dc.description.references Wilson, R. H. (1934). A scientific routine for stock control. Harvard Business Review, Vol. 13, nº. 1, pp. 116-128. es_ES
dc.description.references Yao, M. J. & Chang, Y. J. (2009). Solving the economic lot scheduling problem with multiple facilities in parallel using the time-varying lot sizes approach, in Eighth International Conference on Information and Management Sciences, p. F224. es_ES
dc.description.references Zipkin, P. H. (1991). Computing Optimal Lot Sizes in the Economic Lot Scheduling Problem. Operations Research, 39(1), 56-63. doi:10.1287/opre.39.1.56 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem