- -

Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus

Show full item record

Wu, B.; Zwart, MP.; Sanchez Navarro, JA.; Elena Fito, SF. (2017). Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus. Scientific Reports. 7. https://doi.org/10.1038/s41598-017-05335-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/106293

Files in this item

Item Metadata

Title: Within-host Evolution of Segments Ratio for the Tripartite Genome of Alfalfa Mosaic Virus
Author: Wu, Beilei Zwart, Mark P. Sanchez Navarro, Jesus Angel Elena Fito, Santiago Fco
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] The existence of multipartite viruses is an intriguing mystery in evolutionary virology. Several hypotheses suggest benefits that should outweigh the costs of a reduced transmission efficiency and of segregation of ...[+]
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-017-05335-8
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-017-05335-8
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/
info:eu-repo/grantAgreement/EC/FP7/610427/EU/Evolution of Evolution/
info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/
Thanks:
We thank Francisca de la Iglesia, Paula Agudo and Lorena Corachan for their dedication and expert technical assistance. This project was funded in part by grants BFU2015-65037P from the Spanish Ministry of Economy and ...[+]
Type: Artículo

References

Crosland, W. J. & Crozier, R. H. Myrmecia pilosula, an ant with only one pair of chromosomes. Science 231, 1278 (1986).

Grubben, G. J. H. & Denton, O. A. Plant Resources of Tropical Africa 2. Vegetables. (PROTA Foundation/Backhuys Publishers, 2004).

Allers, T. & Mevarech, A. Archaeal genetics – the third way. Nat. Rev. Genet. 6, 58–73 (2005). [+]
Crosland, W. J. & Crozier, R. H. Myrmecia pilosula, an ant with only one pair of chromosomes. Science 231, 1278 (1986).

Grubben, G. J. H. & Denton, O. A. Plant Resources of Tropical Africa 2. Vegetables. (PROTA Foundation/Backhuys Publishers, 2004).

Allers, T. & Mevarech, A. Archaeal genetics – the third way. Nat. Rev. Genet. 6, 58–73 (2005).

Gronenborn, B. Nanoviruses: genome organization and protein function. Vet. Microbiol. 98, 103–109 (2004).

Jaspars, E. M. Plant viruses with a multipartite genome. Adv. Virus Res. 19, 37–149 (1974).

Sicard, A., Michalakis, Y., Gutiérrez, S. & Blanc, S. The strange lifestyle of multipartite viruses. PLoS Pathog. 12, e1005819 (2016).

Hayakawa, T. et al. Analysis of proteins encoded in the bipartite genome of a new type of parvo-like virus isolated from silkworm – structural protein with DNA polymerase motif. Virus Res. 66, 101–108 (2000).

Ladner, J. T. et al. A multicomponent animal virus isolated from mosquitoes. Cell Host Microb. 20, 357–367 (2016).

Iranzo, J. & Manrubia, S. C. Evolutionary dynamics of genome segmentation in multipartite viruses. Proc. R. Soc. B. 279, 3812–3819 (2012).

Escriu, F., Fraile, A. & García-Arenal, F. Constraints to genetic exchange support gene coadaptation in a tripartite RNA virus. PLoS Pathog. 3, e8 (2007).

Pressing, J. & Reanney, D. C. Divided genomes and intrinsic noise. J. Mol. Evol. 20, 135–146 (1984).

Nee, S. The evolution of multicompartimental genomes in viruses. J. Mol. Evol. 25, 277–281 (1987).

Chao, L. Evolution of sex in RNA viruses. J. Theor. Biol. 133, 99–112 (1988).

Chao, L. Levels of selection, evolution of sex in RNA viruses, and the origin of life. J. Theor. Biol. 153, 229–246 (1991).

Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999).

Ojosnegros, S. et al. Viral genome segmentation can result from a trade-off between genetic content and particle stability. PLoS Genet. 7, e1001344 (2011).

Gilbertson, R. L., Sudarshana, M., Jiang, H., Rojas, M. R. & Lucas, W. J. Limitations on Geminivirus genome size imposed by plasmodesmata and virus-encoded movement proteins: insights into DNA trafficking. Plant Cell. 15, 2578–2591 (2003).

Sicard, A. et al. Gene copy number is differentially regulated in a multipartite virus. Nat. Commun. 4, 2248 (2013).

Allison, R. F., Janda, M. & Ahlquist, P. Infectious in vitro transcripts from Cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with Brome mosaic virus. J. Virol. 62, 3581–3588 (1988).

Ahlquist, P., French, R., Janda, M. & Loesch-Fries, S. Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc. Natl. Acad. Sci. USA 81, 7066–7070 (1984).

Hajimorad, M. R., Kurath, G., Randles, J. W. & Francki, R. I. B. Change in phenotype and encapsidated RNA segments of an isolate of Alfalfa mosaic virus: an influence of host passage. J. Gen. Virol. 72, 2885–2893 (1991).

Dzianott, A. & Bujarski, J. J. Infection and RNA recombination of Brome mosaic virus. Arabidopsis thaliana. Virology 318, 482–492 (2004).

French, R. & Ahlquist, P. Intercistronic as well as terminal sequences are required for efficient amplification of Brome mosaic virus RNA3. J. Virol. 61, 1457–1465 (1987).

French, R. & Ahlquist, P. Characterization and engineering of sequences controlling in vivo synthesis of Brome mosaic virus subgenomic RNA. J. Virol. 62, 2411–2420 (1988).

Pacha, R. F., Allison, R. F. & Ahlquist, P. cis-Acting sequences required for in vivo amplification of genomic RNA3 are organized differently in related bromoviruses. Virology 174, 436–443 (1990).

Traynor, P., Young, B. M. & Ahlquist, P. Deletion analysis of Brome mosaic virus 2a protein: effects on RNA replication and systemic spread. J. Virol. 65, 2807–2815 (1991).

Pacha, R. F. & Ahlquist, P. Use of Bromovirus RNA3 hybrids to study template specificity in viral RNA amplification. J. Virol. 65, 3693–3703 (1991).

Bol, J. F. Alfalfa mosaic virus: coat protein-dependent initiation of infection. Mol. Plant Pathol. 4, 1–8 (2003).

Tromas, N., Zwart, M. P., Lafforgue, G. & Elena, S. F. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet. 10, e1004186 (2014).

Melnyk, C. W., Molnar, A. & Baulcombe, D. C. Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553–3563 (2011).

Cuevas, J. M., Willemsen, A., Hillung, J., Zwart, M. P. & Elena, S. F. Temporal dynamics of intrahost molecular evolution for a plant RNA virus. Mol. Biol. Evol. 32, 1132–1147 (2015).

Ayala, F. J. & Campbell, C. A. Frequency-dependent selection. Annu. Rev. Ecol. Syst. 5, 115–138 (1974).

Van Dun, C. M., Van Vloten-Doting, L. & Bol, J. F. Expression of Alfalfa mosaic virus cDNA1 and 2 in transgenic tobacco plants. Virology 163, 572–578 (1988).

Ni, P., Vaughan, R. C., Tragesser, B., Hoover, H. & Kao, C. C. The plant host can affect the encapsidation of Brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous. J. Mol. Biol. 426, 1061–1076 (2014).

Hayes, R. J. & Buck, K. W. Complete replication of a eukaryotic virus-RNA in vitro by a purified RNA-dependent RNA-polymerase. Cell 63, 363–368 (1990).

Kao, C. C., Quadt, R., Hershberger, R. P. & Ahlquist, P. Brome mosaic virus RNA replication proteins 1a and 2a form a complex in vitro. J. Virol. 66, 6322–6329 (1992).

Quadt, R., Kao, C. C., Browning, K. S., Hershberger, R. P. & Ahlquist, P. Characterization of a host protein associated with Brome mosaic virus RNA-dependent RNA-polymerase. Proc. Natl. Acad. USA 90, 1498–1502 (1993).

Neeleman, L., Olsthoorn, R. C. L., Linthorst, H. J. M. & Bol, J. F. Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA. Proc. Natl. Acad. Sci. USA 98, 14286–14291 (2001).

Olsthoorn, R. C., Mertens, S., Brederode, F. T. & Bol, J. F. A conformational switch at the 3′ end of a plant virus RNA regulates viral replication. EMBO J. 18, 4856–4864 (1999).

Yi, G., Letteney, E., Kim, C. H. & Kao, C. C. Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element. RNA 15, 615–626 (2009).

Mileyko, Y., Jon, R. I. & Weitz, J. S. Small-scale copy number variation and large-scale changes in gene expression. Proc. Natl. Acad. Sci. USA 105, 16659–16664 (2008).

Radhakrishnan, A. & Green, R. Connections underlying translation and mRNA stability. J. Mol. Biol. 428, 3558–3564 (2016).

Bol, J. F. Replication of alfamo- and ilarviruses: role of the coat protein. Annu. Rev. Phytopathol. 43, 39–62 (2005).

Van Rossum, C. M. A., García, M. L. & Bol, J. F. Accumulation of Alfalfa mosaic virus RNAs 1 and 2 requires the encoded proteins in cis. J. Virol. 70, 5100–5105 (1996).

Vlot, A. C., Laros, S. M. & Bol, J. F. Coordinate replication of Alfalfa mosaic virus RNAs 1 and 2 involves cis- and trans-acting functions of the encoded helicase-like and polymerase-like domains. J. Virol. 77, 10790–10798 (2003).

Vlot, A. C. & Bol, J. F. The 5′ untranslated region of Alfalfa mosaic virus RNA 1 is involved in negative-strand RNA synthesis. J. Virol. 77, 11284–11289 (2003).

Schwartz, M. et al. A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol. Cell 9, 505–514 (2002).

Yi, G. & Kao, C. cis- and trans-acting functions of Brome mosaic virus protein 1a in genomic RNA 1 replication. J. Virol. 82, 3045–3053 (2008).

Janda, M. & Ahlquist, P. RNA-dependent replication, transcription, and persistence of Brome mosaic virus RNA replicons in S. cerevisiae. Cell 72, 961–970 (1993).

Aparicio, F. & Pallás, V. The coat protein if Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic-dependent defense signaling response. Mol. Plant Pathol. 18, 173–186 (2017).

Jaspars, E. M. J. Interaction of Alfalfa mosaic virus nucleic acid and protein In Molecular Plant Virology (ed. Davies, J. W.) 155–225 (CRC Press, 1985).

Ansel-McKinney, P. & Gehrke, L. RNA determinants of a specific RNA-coat protein peptide interaction in Alfalfa mosaic virus: conservation of homologous features in ilarvirus RNAs. J. Mol. Biol. 278, 767–785 (1998).

Krab, I. M., Caldwell, C., Gallie, D. R. & Bol, J. F. Coat protein enhances translational efficiency of Alfalfa mosaic virus RNAs and interacts with the eIF4G component of initiation factor eIF4F. J. Gen. Virol. 86, 1841–1849 (2005).

Neeleman, L., Linthorst, H. J. M. & Bol, J. F. Efficient translation of alfamovirus RNAs requires the binding of coat protein dimers to the 3′ termini of the viral RNAs. J. Gen. Virol. 85, 231–240 (2004).

Herránz, M. C., Pallás, V. & Aparicio, F. Multifunctional roles for the N-terminal basic motif of Alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. Mol. Plant Microbe Interact. 25, 1093–1103 (2012).

Neeleman, L. & Bol, J. F. Cis-acting functions of Alfalfa mosaic virus proteins involved in replication and encapsidation of viral RNA. Virology 254, 324–333 (1999).

Van Vloten-Doting, L. & Jaspars, E. M. Uncoating of Alfalfa mosaic virus by its own RNA. Virology 48, 699–708 (1972).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record