- -

beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters

Mostrar el registro completo del ítem

Alquézar-García, B.; Linhares Volpe, HX.; Magnani, RF.; De Miranda, MP.; Santos, MA.; Wulff, NA.; Simoes Bento, JM.... (2017). beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Scientific Reports. 7. https://doi.org/10.1038/s41598-017-06119-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/106305

Ficheros en el ítem

Metadatos del ítem

Título: beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters
Autor: Alquézar-García, Berta Linhares Volpe, Haroldo Xavier Magnani, Rodrigo Facchini de Miranda, Marcelo Pedreira Santos, Mateus Almeida Wulff, Nelson Arno Simoes Bento, Jose Mauricio Postali Parra, Jose Roberto Bouwmeester, Harro Peña, Leandro
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-017-06119-w
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-017-06119-w
Agradecimientos:
We thank Dr. Pedro Serra (IBMCP, Valencia, Spain) for his help with statistical analysis, and Prof. Dr. Luiz A.B. de Moraes (Chemistry Department, FFCLRP, USP, Riberao Preto, Brazil) and Prof. Dr. Edson Rodrigues Filho ...[+]
Tipo: Artículo

References

Bove, J. M. H. A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7–37 (2006).

Gottwald, T. R. Current Epidemiological Understanding of Citrus Huanglongbing. Annu. Rev. Phytopathol 48, 119–39 (2010).

FAOSTAT. Food and Agriculture Organization of the United Nations. Available at: http://faostat3.fao.org/home/E (Accessed: 4th July 2016). [+]
Bove, J. M. H. A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7–37 (2006).

Gottwald, T. R. Current Epidemiological Understanding of Citrus Huanglongbing. Annu. Rev. Phytopathol 48, 119–39 (2010).

FAOSTAT. Food and Agriculture Organization of the United Nations. Available at: http://faostat3.fao.org/home/E (Accessed: 4th July 2016).

Hodges, A. W., Rahmani, M., Stevens, T. J. & Spreen, T. H. Economic impacts of the florida citrus industry final sponsored project report to the Florida department of citrus. 1–39 (2014).

Beattie, G. A. C. et al. Aspects and insights of Australia-Asia collaborative research on Huanglongbing. In Proceedings of an international workshop for prevention of citrus greening diseases in severely infested areas 47–67 (2006).

Silva, J. A. A. et al. Repellency of selected Psidium guajava cultivars to the Asian citrus psyllid, Diaphorina citri. Crop Prot. 84, 14–20 (2016).

Zaka, S. M., Zeng, X. N., Holford, P. & Beattie, G. A. C. Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Sci. 17, 39–45 (2010).

Onagbola, E. O., Rouseff, R. L., Smoot, J. M. & Stelinski, L. L. Guava leaf volatiles and dimethyl disulphide inhibit response of Diaphorina citri Kuwayama to host plant volatiles. J. Appl. Entomol 135, 404–414 (2011).

Khan, Z. R., Midega, C. A., Bruce, T. J., Hooper, A. M. & Pickett, J. A. Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 61, 4185–4196 (2010).

Ichinose, K., Hoa, N. V., Bang, D. V., Tuan, D. H. & Dien, L. Q. Limited efficacy of guava interplanting on citrus greening disease: Effectiveness of protection against disease invasion breaks down after one year. Crop Prot. 34, 119–126 (2012).

Chen, H. C., Sheu, M. J., Lin, L. Y. & Wu, C. M. Chemical composition of the leaf essential oil of Psidium guajava L. from Taiwan. J. Essent. Oil Res. 19, 345–347 (2007).

Garcia, M., Quijano, C. E. & Pino, J. A. Free and glycosidically bound volatiles in guava leaves (Psidium guajava L.) Palmira ICA-I cultivar. J. Essent. Oil Res. 21, 131–134 (2009).

Pino, J. A., Aguero, J., Marbot, R. & Fuentes, V. Leaf oil of Psidium guajava L. from Cuba. J. Essent. Oil Res. 13, 61–62 (2001).

El-ahmady, S. H., Ashour, M. L. & Wink, M. Chemical composition and anti-in flammatory activity of the essential oils of Psidium guajava fruits and leaves. J. Essent. Oil Res. 25, 475–481 (2013).

Ogunwande, I. A., Olawore, N. O., Adeleke, K. A., Ekundayo, O. & Koenig, W. A. Chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour Fragr. J 18, 136–138 (2003).

Satyal, P., Paudel, P., Lamichhane, B. & Setzer, W. N. Leaf essential oil composition and bioactivity of Psidium guajava from Kathmandu, Nepal. Am. J. Essent. oils Nat. Prod 3, 11–14 (2015).

Khadhri, A., El Mokni, R., Almeida, C., Nogueira, J. M. F. & Araújo, M. E. M. Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Ind. Crops Prod 52, 29–31 (2014).

Tholl, D. et al. Practical approaches to plant volatile analysis. Plant Journal 45, 540–560 (2006).

Rouseff, R. L., Onagbola, E. O., Smoot, J. M. & Stelinski, L. L. Sulfur volatiles in guava (Psidium guajava L.) leaves: Possible defense mechanism. J. Agric. Food Chem. 56, 8905–8910 (2008).

Robbins, P. S., Alessandro, R. T., Stelinski, L. L. & Lapointe, S. L. Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomol 95, 774–776 (2012).

Mann, R. S. et al. Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog., doi: 10.1371/journal.ppat.1002610 (2012).

Coutinho-Abreu, I. V., McInally, S., Forster, L., Luck, R. & Ray, A. Odor coding in a disease-transmitting herbivorous insect, the Asian citrus psyllid. Chem. Senses 39, 539–549 (2014).

Mann, R. S., Tiwari, S., Smoot, J. M., Rouseff, R. L. & Stelinski, L. L. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyllidae). J. Appl. Entomol 136, 87–96 (2012).

Khurana, S. & Siddiqi, O. Olfactory responses of Drosophila larvae. Chem. Senses 38, 315–323 (2013).

Martini, X., Willett, D. S., Kuhns, E. H. & Stelinski, L. L. Disruption of vector host preference with plant volatiles may reduce spread of insect-transmitted plant pathogens. J. Chem. Ecol. 42, 357–367 (2016).

Kappers, I. F. et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309, 2070–2072 (2005).

Schnee, C., Köllner, T. G., Held, M., Turlings, T. C. J. & Gershenzon, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103, 1129–1134 (2007).

Aharoni, A. et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866–2884 (2003).

Delatte, T. L. et al. A primary role for a secondary metabolite: the sesquiterpene caryophyllene affects phyto-hormones in Arabidopsis, in preparation (2017).

Tholl, D., Chen, F., Petri, J., Gershenzon, J. & Pichersky, E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42, 757–771 (2005).

Chen, F. et al. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15, 481–494 (2003).

Reinecke, A. & Hilker, M. P Semiochemicals-Perception and Behavioural Responses by Insects in Annual Plant Reviews (eds C. Voelckel and G. Jander) 47, 115–154 (Wiley John & Sons, Ltd, 2014).

Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry 72, 1605–1611 (2011).

Webster, B., Bruce, T., Pickett, J. & Hardie, J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 79, 451–457 (2010).

Patt, J. M. & Sétamou, M. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ. Entomol. 39, 618–624 (2010).

Paris, T. M., Croxton, S. D., Stansly, P. A. & Allan, S. A. Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol. Exp. Appl. 155, 137–147 (2015).

Wenninger, E. J., Stelinski, L. L. & Hall, D. G. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ. Entomol 38, 225–234 (2009).

Hall, D. G. et al. Greenhouse investigations on the effect of guava on infestations of Asian citrus psyllid in grapefruit. Proc. Fla. State Hort. Soc 121, 104–109 (2008).

Ruan, C., Hall, D. G., Liu, B. & Fan, G. Host-choice behavior of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) under laboratory conditions. J. Insect Behav. 28, 138–146 (2015).

Zaka, S. M., Zeng, X. & Wang, H. Chemotaxis of adults of the Asiatic citrus psyllid, Diaphorina citri Kuwayama, to volatile terpenes detected from guava leaves. Pak. J. Zool. 47, 153–159 (2015).

Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441–1447 (2006).

Laothawornkitkul, J. et al. Isoprene emissions influence herbivore feeding decisions. Plant, Cell Environ 31, 1410–1415 (2008).

McCallum, E. J. et al. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J. Exp. Bot. 214, 3672–3677 (2011).

Beale, M. H. et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA 103, 10509–10513 (2006).

Yu, X. et al. Expression of an (E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation. Crop J 1, 50–60 (2013).

Bruce, T. J. A. et al. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep 5, 11183 (2015).

Webster, B. & Cardé, R. T. Use of habitat odour by host-seeking insects. Biol. Rev. Camb. Philos Soc., doi: 10.1111/brv.12281 (2016).

Cen, Y. J., Ye, J. M., Xu, C. B. & Feng, A. W. The taxis of Diaphorina citri to the volatile oils extracted from non-host plants. J. South China Agric. Univ 26, 41–44 (2005).

Cazares-Alonso, N. P., Verde Star, M. J., López Arroyo, J. I. & Almeyda León, I. H. Evaluación de diferentes extractos vegetales contra el psílido asiático de los cítricos Diaphorina citri (Hemiptera: Liviidae). Rev. Colomb. Entomol. 40, 67–73 (2014).

Mann, R. S., Rouseff, R. L., Smoot, J. M., Castle, W. S. & Stelinski, L. L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles. Bull. Entomol. Res. 101, 89–97 (2011).

Cook, S. M., Khan, Z. R. & Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400 (2007).

Tomaseto, A. F., Krugner, R. & Lopes, J. R. S. Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 140, 91–102 (2016).

Setamou, M. & Bartels, D. W. Living on the edges: Spatial niche occupation of Asian citrus psyllid, Diaphorina citri kuwayama (Hemiptera: Liviidae), in citrus groves. PLoS One 10, e0131917 (2015).

Bourguet, D. & Guillemaud, T. The hidden and external costs of pesticide use in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 19, 35–120 (Springer International Publishing, 2016).

Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

Rodríguez, A. et al. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol. 156, 793–802 (2011).

Vet, L. E. M., Lenteren, J. C. V., Heymans, M. & Meelis, E. An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol. Entomol. 8, 97–106 (1983).

Schreck, C. E. Techniques for the evaluation of insect repellents: a critical review. Ann. Rev. Entomol 22, 101–119 (1977).

Bartlett, M. S. Properties of sufficiency and statistical tests. Proc. R. Soc. A Math. Phys. Eng. Sci 160, 268–282 (1937).

Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normailty (complete samples). Biometrika 52, 591–611 (1965).

R Developement Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 1, 409 (2015).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem