- -

beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alquézar-García, Berta es_ES
dc.contributor.author Linhares Volpe, Haroldo Xavier es_ES
dc.contributor.author Magnani, Rodrigo Facchini es_ES
dc.contributor.author de Miranda, Marcelo Pedreira es_ES
dc.contributor.author Santos, Mateus Almeida es_ES
dc.contributor.author Wulff, Nelson Arno es_ES
dc.contributor.author Simoes Bento, Jose Mauricio es_ES
dc.contributor.author Postali Parra, Jose Roberto es_ES
dc.contributor.author Bouwmeester, Harro es_ES
dc.contributor.author Peña, Leandro es_ES
dc.date.accessioned 2018-07-26T07:10:21Z
dc.date.available 2018-07-26T07:10:21Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/106305
dc.description.abstract [EN] Production of citrus, the main fruit tree crop worldwide, is severely threatened by Huanglongbing (HLB), for which as yet a cure is not available. Spread of this bacterial disease in America and Asia is intimately connected with dispersal and feeding of the insect vector Diaphorina citri, oligophagous on rutaceous host plants. Effective control of this psyllid is an important component in successful HLB management programs. Volatiles released from the non-host guava have been shown to be repellent to the psyllid and to inhibit its response to citrus odour. By analysing VOC emission from guava we identified one volatile compound, (E)-ß-caryophyllene, which at certain doses exerts a repellent effect on D. citri. Non-host plant rejection mediated by (E)-ß-caryophyllene is demonstrated here by using Arabidopsis over-expression and knock-out lines. For the first time, results indicate that genetically engineered Arabidopsis plants with modified emission of VOCs can alter the behaviour of D. citri. This study shows that transgenic plants with an inherent ability to release (E)-ß-caryophyllene can potentially be used in new protection strategies of citrus trees against HLB. es_ES
dc.description.sponsorship We thank Dr. Pedro Serra (IBMCP, Valencia, Spain) for his help with statistical analysis, and Prof. Dr. Luiz A.B. de Moraes (Chemistry Department, FFCLRP, USP, Riberao Preto, Brazil) and Prof. Dr. Edson Rodrigues Filho (LaBioMMi, Chemistry Department, UFSCar, Sao Carlos, Brazil) for the use of GC-MS equipment. Use of the Citrus Germplasm Bank (IVIA, Valencia, Spain) is gratefully acknowledged. This work was funded by the Fundo de Defesa da Citricultura (Fundecitrus) and FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, 2015/0711-3). In memoriam of Prof. J.M.Bove. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.title beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-06119-w es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Alquézar-García, B.; Linhares Volpe, HX.; Magnani, RF.; De Miranda, MP.; Santos, MA.; Wulff, NA.; Simoes Bento, JM.... (2017). beta-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Scientific Reports. 7. https://doi.org/10.1038/s41598-017-06119-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-017-06119-w es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28717202 en_EN
dc.identifier.pmcid PMC5514130 en_EN
dc.relation.pasarela S\356440 es_ES
dc.contributor.funder Fundo de Defesa da Citricultura
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo
dc.description.references Bove, J. M. H. A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7–37 (2006). es_ES
dc.description.references Gottwald, T. R. Current Epidemiological Understanding of Citrus Huanglongbing. Annu. Rev. Phytopathol 48, 119–39 (2010). es_ES
dc.description.references FAOSTAT. Food and Agriculture Organization of the United Nations. Available at: http://faostat3.fao.org/home/E (Accessed: 4th July 2016). es_ES
dc.description.references Hodges, A. W., Rahmani, M., Stevens, T. J. & Spreen, T. H. Economic impacts of the florida citrus industry final sponsored project report to the Florida department of citrus. 1–39 (2014). es_ES
dc.description.references Beattie, G. A. C. et al. Aspects and insights of Australia-Asia collaborative research on Huanglongbing. In Proceedings of an international workshop for prevention of citrus greening diseases in severely infested areas 47–67 (2006). es_ES
dc.description.references Silva, J. A. A. et al. Repellency of selected Psidium guajava cultivars to the Asian citrus psyllid, Diaphorina citri. Crop Prot. 84, 14–20 (2016). es_ES
dc.description.references Zaka, S. M., Zeng, X. N., Holford, P. & Beattie, G. A. C. Repellent effect of guava leaf volatiles on settlement of adults of citrus psylla, Diaphorina citri Kuwayama, on citrus. Insect Sci. 17, 39–45 (2010). es_ES
dc.description.references Onagbola, E. O., Rouseff, R. L., Smoot, J. M. & Stelinski, L. L. Guava leaf volatiles and dimethyl disulphide inhibit response of Diaphorina citri Kuwayama to host plant volatiles. J. Appl. Entomol 135, 404–414 (2011). es_ES
dc.description.references Khan, Z. R., Midega, C. A., Bruce, T. J., Hooper, A. M. & Pickett, J. A. Exploiting phytochemicals for developing a ‘push-pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 61, 4185–4196 (2010). es_ES
dc.description.references Ichinose, K., Hoa, N. V., Bang, D. V., Tuan, D. H. & Dien, L. Q. Limited efficacy of guava interplanting on citrus greening disease: Effectiveness of protection against disease invasion breaks down after one year. Crop Prot. 34, 119–126 (2012). es_ES
dc.description.references Chen, H. C., Sheu, M. J., Lin, L. Y. & Wu, C. M. Chemical composition of the leaf essential oil of Psidium guajava L. from Taiwan. J. Essent. Oil Res. 19, 345–347 (2007). es_ES
dc.description.references Garcia, M., Quijano, C. E. & Pino, J. A. Free and glycosidically bound volatiles in guava leaves (Psidium guajava L.) Palmira ICA-I cultivar. J. Essent. Oil Res. 21, 131–134 (2009). es_ES
dc.description.references Pino, J. A., Aguero, J., Marbot, R. & Fuentes, V. Leaf oil of Psidium guajava L. from Cuba. J. Essent. Oil Res. 13, 61–62 (2001). es_ES
dc.description.references El-ahmady, S. H., Ashour, M. L. & Wink, M. Chemical composition and anti-in flammatory activity of the essential oils of Psidium guajava fruits and leaves. J. Essent. Oil Res. 25, 475–481 (2013). es_ES
dc.description.references Ogunwande, I. A., Olawore, N. O., Adeleke, K. A., Ekundayo, O. & Koenig, W. A. Chemical composition of the leaf volatile oil of Psidium guajava L. growing in Nigeria. Flavour Fragr. J 18, 136–138 (2003). es_ES
dc.description.references Satyal, P., Paudel, P., Lamichhane, B. & Setzer, W. N. Leaf essential oil composition and bioactivity of Psidium guajava from Kathmandu, Nepal. Am. J. Essent. oils Nat. Prod 3, 11–14 (2015). es_ES
dc.description.references Khadhri, A., El Mokni, R., Almeida, C., Nogueira, J. M. F. & Araújo, M. E. M. Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Ind. Crops Prod 52, 29–31 (2014). es_ES
dc.description.references Tholl, D. et al. Practical approaches to plant volatile analysis. Plant Journal 45, 540–560 (2006). es_ES
dc.description.references Rouseff, R. L., Onagbola, E. O., Smoot, J. M. & Stelinski, L. L. Sulfur volatiles in guava (Psidium guajava L.) leaves: Possible defense mechanism. J. Agric. Food Chem. 56, 8905–8910 (2008). es_ES
dc.description.references Robbins, P. S., Alessandro, R. T., Stelinski, L. L. & Lapointe, S. L. Volatile profiles of young leaves of Rutaceae spp. varying in susceptibility to the Asian citrus psyllid (Hemiptera: Psyllidae). Florida Entomol 95, 774–776 (2012). es_ES
dc.description.references Mann, R. S. et al. Induced release of a plant-defense volatile ‘deceptively’ attracts insect vectors to plants infected with a bacterial pathogen. PLoS Pathog., doi: 10.1371/journal.ppat.1002610 (2012). es_ES
dc.description.references Coutinho-Abreu, I. V., McInally, S., Forster, L., Luck, R. & Ray, A. Odor coding in a disease-transmitting herbivorous insect, the Asian citrus psyllid. Chem. Senses 39, 539–549 (2014). es_ES
dc.description.references Mann, R. S., Tiwari, S., Smoot, J. M., Rouseff, R. L. & Stelinski, L. L. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri Kuwayama (Hemiptera: Psyllidae). J. Appl. Entomol 136, 87–96 (2012). es_ES
dc.description.references Khurana, S. & Siddiqi, O. Olfactory responses of Drosophila larvae. Chem. Senses 38, 315–323 (2013). es_ES
dc.description.references Martini, X., Willett, D. S., Kuhns, E. H. & Stelinski, L. L. Disruption of vector host preference with plant volatiles may reduce spread of insect-transmitted plant pathogens. J. Chem. Ecol. 42, 357–367 (2016). es_ES
dc.description.references Kappers, I. F. et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309, 2070–2072 (2005). es_ES
dc.description.references Schnee, C., Köllner, T. G., Held, M., Turlings, T. C. J. & Gershenzon, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 103, 1129–1134 (2007). es_ES
dc.description.references Aharoni, A. et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866–2884 (2003). es_ES
dc.description.references Delatte, T. L. et al. A primary role for a secondary metabolite: the sesquiterpene caryophyllene affects phyto-hormones in Arabidopsis, in preparation (2017). es_ES
dc.description.references Tholl, D., Chen, F., Petri, J., Gershenzon, J. & Pichersky, E. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42, 757–771 (2005). es_ES
dc.description.references Chen, F. et al. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15, 481–494 (2003). es_ES
dc.description.references Reinecke, A. & Hilker, M. P Semiochemicals-Perception and Behavioural Responses by Insects in Annual Plant Reviews (eds C. Voelckel and G. Jander) 47, 115–154 (Wiley John & Sons, Ltd, 2014). es_ES
dc.description.references Bruce, T. J. A. & Pickett, J. A. Perception of plant volatile blends by herbivorous insects – Finding the right mix. Phytochemistry 72, 1605–1611 (2011). es_ES
dc.description.references Webster, B., Bruce, T., Pickett, J. & Hardie, J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 79, 451–457 (2010). es_ES
dc.description.references Patt, J. M. & Sétamou, M. Responses of the Asian citrus psyllid to volatiles emitted by the flushing shoots of its rutaceous host plants. Environ. Entomol. 39, 618–624 (2010). es_ES
dc.description.references Paris, T. M., Croxton, S. D., Stansly, P. A. & Allan, S. A. Temporal response and attraction of Diaphorina citri to visual stimuli. Entomol. Exp. Appl. 155, 137–147 (2015). es_ES
dc.description.references Wenninger, E. J., Stelinski, L. L. & Hall, D. G. Roles of olfactory cues, visual cues, and mating status in orientation of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) to four different host plants. Environ. Entomol 38, 225–234 (2009). es_ES
dc.description.references Hall, D. G. et al. Greenhouse investigations on the effect of guava on infestations of Asian citrus psyllid in grapefruit. Proc. Fla. State Hort. Soc 121, 104–109 (2008). es_ES
dc.description.references Ruan, C., Hall, D. G., Liu, B. & Fan, G. Host-choice behavior of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) under laboratory conditions. J. Insect Behav. 28, 138–146 (2015). es_ES
dc.description.references Zaka, S. M., Zeng, X. & Wang, H. Chemotaxis of adults of the Asiatic citrus psyllid, Diaphorina citri Kuwayama, to volatile terpenes detected from guava leaves. Pak. J. Zool. 47, 153–159 (2015). es_ES
dc.description.references Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441–1447 (2006). es_ES
dc.description.references Laothawornkitkul, J. et al. Isoprene emissions influence herbivore feeding decisions. Plant, Cell Environ 31, 1410–1415 (2008). es_ES
dc.description.references McCallum, E. J. et al. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J. Exp. Bot. 214, 3672–3677 (2011). es_ES
dc.description.references Beale, M. H. et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. USA 103, 10509–10513 (2006). es_ES
dc.description.references Yu, X. et al. Expression of an (E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation. Crop J 1, 50–60 (2013). es_ES
dc.description.references Bruce, T. J. A. et al. The first crop plant genetically engineered to release an insect pheromone for defence. Sci. Rep 5, 11183 (2015). es_ES
dc.description.references Webster, B. & Cardé, R. T. Use of habitat odour by host-seeking insects. Biol. Rev. Camb. Philos Soc., doi: 10.1111/brv.12281 (2016). es_ES
dc.description.references Cen, Y. J., Ye, J. M., Xu, C. B. & Feng, A. W. The taxis of Diaphorina citri to the volatile oils extracted from non-host plants. J. South China Agric. Univ 26, 41–44 (2005). es_ES
dc.description.references Cazares-Alonso, N. P., Verde Star, M. J., López Arroyo, J. I. & Almeyda León, I. H. Evaluación de diferentes extractos vegetales contra el psílido asiático de los cítricos Diaphorina citri (Hemiptera: Liviidae). Rev. Colomb. Entomol. 40, 67–73 (2014). es_ES
dc.description.references Mann, R. S., Rouseff, R. L., Smoot, J. M., Castle, W. S. & Stelinski, L. L. Sulfur volatiles from Allium spp. affect Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), response to citrus volatiles. Bull. Entomol. Res. 101, 89–97 (2011). es_ES
dc.description.references Cook, S. M., Khan, Z. R. & Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400 (2007). es_ES
dc.description.references Tomaseto, A. F., Krugner, R. & Lopes, J. R. S. Effect of plant barriers and citrus leaf age on dispersal of Diaphorina citri (Hemiptera: Liviidae). J. Appl. Entomol. 140, 91–102 (2016). es_ES
dc.description.references Setamou, M. & Bartels, D. W. Living on the edges: Spatial niche occupation of Asian citrus psyllid, Diaphorina citri kuwayama (Hemiptera: Liviidae), in citrus groves. PLoS One 10, e0131917 (2015). es_ES
dc.description.references Bourguet, D. & Guillemaud, T. The hidden and external costs of pesticide use in Sustainable Agriculture Reviews (ed. Lichtfouse, E.) 19, 35–120 (Springer International Publishing, 2016). es_ES
dc.description.references Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003). es_ES
dc.description.references Rodríguez, A. et al. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol. 156, 793–802 (2011). es_ES
dc.description.references Vet, L. E. M., Lenteren, J. C. V., Heymans, M. & Meelis, E. An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol. Entomol. 8, 97–106 (1983). es_ES
dc.description.references Schreck, C. E. Techniques for the evaluation of insect repellents: a critical review. Ann. Rev. Entomol 22, 101–119 (1977). es_ES
dc.description.references Bartlett, M. S. Properties of sufficiency and statistical tests. Proc. R. Soc. A Math. Phys. Eng. Sci 160, 268–282 (1937). es_ES
dc.description.references Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normailty (complete samples). Biometrika 52, 591–611 (1965). es_ES
dc.description.references R Developement Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. 1, 409 (2015). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem