- -

Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Baldovi, Hermenegildo es_ES
dc.contributor.author Latorre Sánchez, Marcos es_ES
dc.contributor.author Esteve-Adell, Iván es_ES
dc.contributor.author Kham, Anish es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author Kosa, Samia A. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2018-09-10T09:21:35Z
dc.date.available 2018-09-10T09:21:35Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1388-0764 es_ES
dc.identifier.uri http://hdl.handle.net/10251/106867
dc.description.abstract [EN] MoS2 quantum dots (QDs) have been obtained in colloidal suspensions by 532 nm laser ablation (7 ns fwhp/pulse, 50 mJ/pulse) of commercial MoS2 particles in acetonitrile. High-resolution transmission electron microscopy images show a lateral size distribution from 5 to 20 nm, but a more homogeneous particle size of 20 nm can be obtained by silica gel chromatography purification in acetonitrile. MoS2 QDs obtained by laser ablation are constituted by 3-6 MoS2 layers (1.8-4 nm thickness) and exhibit photoluminescence whose lambda(PL) varies from 430 to 530 nm depending on the excitation wavelength. As predicted by theory, the confinement effect and the larger periphery in MoS2 QDs increasing the bandgap and having catalytically active edges are reflected in an enhancement of the photocatalytic activity for H-2 generation upon UV-Vis irradiation using CH3OH as sacrificial electron donor due to the increase in the reduction potential of conduction band electrons and the electron transfer kinetics. es_ES
dc.description.sponsorship Financial support by Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-2012-32315) and Generalitat Valenciana (Prometeo 2012-13) is gratefully acknowledged. This study was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No. 75-130-35-HiCi. The authors, therefore, acknowledge technical and financial support of KAU. MLS and HGB thank the Spanish Ministry for postgraduate scholarships. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Nanoparticle Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanostructures es_ES
dc.subject Few-layer chalcogenides es_ES
dc.subject MoS2 es_ES
dc.subject Photocatalytic hydrogen generation es_ES
dc.subject Photoluminescence es_ES
dc.subject Energy conversion es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11051-016-3540-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/KAU//75-130-35-HiCi/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Garcia-Baldovi, H.; Latorre Sánchez, M.; Esteve-Adell, I.; Kham, A.; Asiri, AM.; Kosa, SA.; García Gómez, H. (2016). Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation. Journal of Nanoparticle Research. 18(8). https://doi.org/10.1007/s11051-016-3540-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11051-016-3540-9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\328488 es_ES
dc.contributor.funder King Abdulaziz University, Arabia Saudí
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937 es_ES
dc.description.references Atienzar P, Primo A, Lavorato C, Molinari R, García H (2013) Preparation of graphene quantum dots from pyrolyzed alginate. Langmuir 29:6141–6146 es_ES
dc.description.references Bruix A, Fuchtbauer HG, Tuxen AK, Walton AS, Andersen M, Porsgaard S, Besenbacher F, Hammer B, Lauritsen JV (2015) In situ detection of active edge sites in single-layer MoS2 catalysts. ACS Nano 9:9322–9330 es_ES
dc.description.references Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926 es_ES
dc.description.references Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. Rsc Adv 2:3602–3606 es_ES
dc.description.references Chen XX, Jin QQ, Wu LZ, Tung CH, Tang XJ (2014) Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Edit 53:12542–12547 es_ES
dc.description.references Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571 es_ES
dc.description.references Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475 es_ES
dc.description.references Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116 es_ES
dc.description.references Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976 es_ES
dc.description.references Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191 es_ES
dc.description.references Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS0 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969 es_ES
dc.description.references Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317 es_ES
dc.description.references Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591 es_ES
dc.description.references Li T, Galli G (2007) Electronic properties of MoS2 nanoparticles. J Phys Chem C 111:16192–16196 es_ES
dc.description.references Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024 es_ES
dc.description.references Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:4 es_ES
dc.description.references Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30 es_ES
dc.description.references Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446 es_ES
dc.description.references Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544 es_ES
dc.description.references Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419 es_ES
dc.description.references Oztas T, Sen HS, Durgun E, Ortaç Bl (2014) Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment. J Phys Chem C 118:30120–30126 es_ES
dc.description.references Peterson MW, Nenadovic MT, Rajh T, Herak R, Micic OI, Goral JP, Nozik AJ (1988) Quantized colloids produced by dissolution of layered semiconductors in acetonitrile. J Phys Chem 92:1400–1402 es_ES
dc.description.references Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nano 6:147–150 es_ES
dc.description.references Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062 es_ES
dc.description.references Serrao CR, Diamond AM, Hsu SL et al (2015) Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl Phys Lett 106:052101 es_ES
dc.description.references Shen Y, Gee MY, Tan R, Pellechia PJ, Greytak AB (2013) Purification of quantum dots by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange. Chem Mater 25:2838–2848 es_ES
dc.description.references Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275 es_ES
dc.description.references Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano 7:699–712 es_ES
dc.description.references Wang K, Wang J, Fan J et al (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7:9260–9267 es_ES
dc.description.references Wilcoxon JP, Newcomer PP, Samara GA (1997) Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J Appl Phys 81:7934–7944 es_ES
dc.description.references Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578 es_ES
dc.description.references Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-Rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807 es_ES
dc.description.references Yin W, Yan L, Yu J et al (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8:6922–6933 es_ES
dc.description.references Yu HL, Yu XB, Chen YJ, Zhang S, Gao P, Li CY (2015) A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale 7:8731–8738 es_ES
dc.description.references Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636 es_ES
dc.description.references Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177 es_ES
dc.description.references Zong X, Na Y, Wen F et al (2009) Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chem Commun 30:4536–4538 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem