Mostrar el registro sencillo del ítem
dc.contributor.author | Garcia-Baldovi, Hermenegildo | es_ES |
dc.contributor.author | Latorre Sánchez, Marcos | es_ES |
dc.contributor.author | Esteve-Adell, Iván | es_ES |
dc.contributor.author | Kham, Anish | es_ES |
dc.contributor.author | Asiri, Abdullah M. | es_ES |
dc.contributor.author | Kosa, Samia A. | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2018-09-10T09:21:35Z | |
dc.date.available | 2018-09-10T09:21:35Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 1388-0764 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/106867 | |
dc.description.abstract | [EN] MoS2 quantum dots (QDs) have been obtained in colloidal suspensions by 532 nm laser ablation (7 ns fwhp/pulse, 50 mJ/pulse) of commercial MoS2 particles in acetonitrile. High-resolution transmission electron microscopy images show a lateral size distribution from 5 to 20 nm, but a more homogeneous particle size of 20 nm can be obtained by silica gel chromatography purification in acetonitrile. MoS2 QDs obtained by laser ablation are constituted by 3-6 MoS2 layers (1.8-4 nm thickness) and exhibit photoluminescence whose lambda(PL) varies from 430 to 530 nm depending on the excitation wavelength. As predicted by theory, the confinement effect and the larger periphery in MoS2 QDs increasing the bandgap and having catalytically active edges are reflected in an enhancement of the photocatalytic activity for H-2 generation upon UV-Vis irradiation using CH3OH as sacrificial electron donor due to the increase in the reduction potential of conduction band electrons and the electron transfer kinetics. | es_ES |
dc.description.sponsorship | Financial support by Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-2012-32315) and Generalitat Valenciana (Prometeo 2012-13) is gratefully acknowledged. This study was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No. 75-130-35-HiCi. The authors, therefore, acknowledge technical and financial support of KAU. MLS and HGB thank the Spanish Ministry for postgraduate scholarships. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Nanoparticle Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanostructures | es_ES |
dc.subject | Few-layer chalcogenides | es_ES |
dc.subject | MoS2 | es_ES |
dc.subject | Photocatalytic hydrogen generation | es_ES |
dc.subject | Photoluminescence | es_ES |
dc.subject | Energy conversion | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11051-016-3540-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/KAU//75-130-35-HiCi/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Garcia-Baldovi, H.; Latorre Sánchez, M.; Esteve-Adell, I.; Kham, A.; Asiri, AM.; Kosa, SA.; García Gómez, H. (2016). Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation. Journal of Nanoparticle Research. 18(8). https://doi.org/10.1007/s11051-016-3540-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11051-016-3540-9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\328488 | es_ES |
dc.contributor.funder | King Abdulaziz University, Arabia Saudí | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937 | es_ES |
dc.description.references | Atienzar P, Primo A, Lavorato C, Molinari R, García H (2013) Preparation of graphene quantum dots from pyrolyzed alginate. Langmuir 29:6141–6146 | es_ES |
dc.description.references | Bruix A, Fuchtbauer HG, Tuxen AK, Walton AS, Andersen M, Porsgaard S, Besenbacher F, Hammer B, Lauritsen JV (2015) In situ detection of active edge sites in single-layer MoS2 catalysts. ACS Nano 9:9322–9330 | es_ES |
dc.description.references | Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926 | es_ES |
dc.description.references | Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. Rsc Adv 2:3602–3606 | es_ES |
dc.description.references | Chen XX, Jin QQ, Wu LZ, Tung CH, Tang XJ (2014) Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Edit 53:12542–12547 | es_ES |
dc.description.references | Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571 | es_ES |
dc.description.references | Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475 | es_ES |
dc.description.references | Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116 | es_ES |
dc.description.references | Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976 | es_ES |
dc.description.references | Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191 | es_ES |
dc.description.references | Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS0 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969 | es_ES |
dc.description.references | Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317 | es_ES |
dc.description.references | Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591 | es_ES |
dc.description.references | Li T, Galli G (2007) Electronic properties of MoS2 nanoparticles. J Phys Chem C 111:16192–16196 | es_ES |
dc.description.references | Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024 | es_ES |
dc.description.references | Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:4 | es_ES |
dc.description.references | Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30 | es_ES |
dc.description.references | Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446 | es_ES |
dc.description.references | Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544 | es_ES |
dc.description.references | Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419 | es_ES |
dc.description.references | Oztas T, Sen HS, Durgun E, Ortaç Bl (2014) Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment. J Phys Chem C 118:30120–30126 | es_ES |
dc.description.references | Peterson MW, Nenadovic MT, Rajh T, Herak R, Micic OI, Goral JP, Nozik AJ (1988) Quantized colloids produced by dissolution of layered semiconductors in acetonitrile. J Phys Chem 92:1400–1402 | es_ES |
dc.description.references | Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nano 6:147–150 | es_ES |
dc.description.references | Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062 | es_ES |
dc.description.references | Serrao CR, Diamond AM, Hsu SL et al (2015) Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl Phys Lett 106:052101 | es_ES |
dc.description.references | Shen Y, Gee MY, Tan R, Pellechia PJ, Greytak AB (2013) Purification of quantum dots by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange. Chem Mater 25:2838–2848 | es_ES |
dc.description.references | Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275 | es_ES |
dc.description.references | Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano 7:699–712 | es_ES |
dc.description.references | Wang K, Wang J, Fan J et al (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7:9260–9267 | es_ES |
dc.description.references | Wilcoxon JP, Newcomer PP, Samara GA (1997) Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J Appl Phys 81:7934–7944 | es_ES |
dc.description.references | Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578 | es_ES |
dc.description.references | Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-Rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807 | es_ES |
dc.description.references | Yin W, Yan L, Yu J et al (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8:6922–6933 | es_ES |
dc.description.references | Yu HL, Yu XB, Chen YJ, Zhang S, Gao P, Li CY (2015) A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale 7:8731–8738 | es_ES |
dc.description.references | Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636 | es_ES |
dc.description.references | Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177 | es_ES |
dc.description.references | Zong X, Na Y, Wen F et al (2009) Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chem Commun 30:4536–4538 | es_ES |