- -

Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation

Mostrar el registro completo del ítem

Garcia-Baldovi, H.; Latorre Sánchez, M.; Esteve-Adell, I.; Kham, A.; Asiri, AM.; Kosa, SA.; García Gómez, H. (2016). Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation. Journal of Nanoparticle Research. 18(8). https://doi.org/10.1007/s11051-016-3540-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/106867

Ficheros en el ítem

Metadatos del ítem

Título: Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H-2 generation
Autor: Garcia-Baldovi, Hermenegildo Latorre Sánchez, Marcos Esteve-Adell, Iván Kham, Anish Asiri, Abdullah M. Kosa, Samia A. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] MoS2 quantum dots (QDs) have been obtained in colloidal suspensions by 532 nm laser ablation (7 ns fwhp/pulse, 50 mJ/pulse) of commercial MoS2 particles in acetonitrile. High-resolution transmission electron microscopy ...[+]
Palabras clave: Nanostructures , Few-layer chalcogenides , MoS2 , Photocatalytic hydrogen generation , Photoluminescence , Energy conversion
Derechos de uso: Cerrado
Fuente:
Journal of Nanoparticle Research. (issn: 1388-0764 )
DOI: 10.1007/s11051-016-3540-9
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11051-016-3540-9
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/KAU//75-130-35-HiCi/
Agradecimientos:
Financial support by Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ-2012-32315) and Generalitat Valenciana (Prometeo 2012-13) is gratefully acknowledged. This study was funded by the Deanship of ...[+]
Tipo: Artículo

References

Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

Atienzar P, Primo A, Lavorato C, Molinari R, García H (2013) Preparation of graphene quantum dots from pyrolyzed alginate. Langmuir 29:6141–6146

Bruix A, Fuchtbauer HG, Tuxen AK, Walton AS, Andersen M, Porsgaard S, Besenbacher F, Hammer B, Lauritsen JV (2015) In situ detection of active edge sites in single-layer MoS2 catalysts. ACS Nano 9:9322–9330 [+]
Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

Atienzar P, Primo A, Lavorato C, Molinari R, García H (2013) Preparation of graphene quantum dots from pyrolyzed alginate. Langmuir 29:6141–6146

Bruix A, Fuchtbauer HG, Tuxen AK, Walton AS, Andersen M, Porsgaard S, Besenbacher F, Hammer B, Lauritsen JV (2015) In situ detection of active edge sites in single-layer MoS2 catalysts. ACS Nano 9:9322–9330

Butler SZ, Hollen SM, Cao L et al (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–2926

Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. Rsc Adv 2:3602–3606

Chen XX, Jin QQ, Wu LZ, Tung CH, Tang XJ (2014) Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Edit 53:12542–12547

Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116

Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS0 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11:963–969

Klimov VI, Mikhailovsky AA, Xu S, Malko A, Hollingsworth JA, Leatherdale CA, Eisler HJ, Bawendi MG (2000) Optical gain and stimulated emission in nanocrystal quantum dots. Science 290:314–317

Laursen AB, Kegnaes S, Dahl S, Chorkendorff I (2012) Molybdenum sulfides—efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 5:5577–5591

Li T, Galli G (2007) Electronic properties of MoS2 nanoparticles. J Phys Chem C 111:16192–16196

Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:4

Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30

Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419

Oztas T, Sen HS, Durgun E, Ortaç Bl (2014) Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment. J Phys Chem C 118:30120–30126

Peterson MW, Nenadovic MT, Rajh T, Herak R, Micic OI, Goral JP, Nozik AJ (1988) Quantized colloids produced by dissolution of layered semiconductors in acetonitrile. J Phys Chem 92:1400–1402

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nano 6:147–150

Ramakrishna Matte HSS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CNR (2010) MoS2 and WS2 analogues of graphene. Angew Chem Int Ed 49:4059–4062

Serrao CR, Diamond AM, Hsu SL et al (2015) Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl Phys Lett 106:052101

Shen Y, Gee MY, Tan R, Pellechia PJ, Greytak AB (2013) Purification of quantum dots by gel permeation chromatography and the effect of excess ligands on shell growth and ligand exchange. Chem Mater 25:2838–2848

Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275

Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano 7:699–712

Wang K, Wang J, Fan J et al (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7:9260–9267

Wilcoxon JP, Newcomer PP, Samara GA (1997) Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime. J Appl Phys 81:7934–7944

Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou XW, Xie Y (2013) Defect-Rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv Mater 25:5807

Yin W, Yan L, Yu J et al (2014) High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8:6922–6933

Yu HL, Yu XB, Chen YJ, Zhang S, Gao P, Li CY (2015) A strategy to synergistically increase the number of active edge sites and the conductivity of MoS2 nanosheets for hydrogen evolution. Nanoscale 7:8731–8738

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

Zong X, Na Y, Wen F et al (2009) Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chem Commun 30:4536–4538

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem