- -

Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels

Show full item record

Sanmartín-Masiá, E.; Poveda-Reyes, S.; Gallego Ferrer, G. (2017). Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels. International Journal of Polymeric Materials. 66(6):280-288. doi:10.1080/00914037.2016.1201828

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/107376

Files in this item

Item Metadata

Title: Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels
Author: Sanmartín-Masiá, Esther Poveda-Reyes, Sara Gallego Ferrer, Gloria
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] Gelatin injectable hydrogels have attracted attention for soft tissues regeneration; however, their poor mechanical properties limit their applications. The authors present a versatile strategy to enhance mechanical ...[+]
Subjects: Enhanced mechanical properties , Enzymatic crosslinking , Gelatin , Hyaluronic acid , Injectable hydrogels , Protein-polysaccharide hydrogel
Copyrigths: Cerrado
Source:
International Journal of Polymeric Materials. (issn: 0091-4037 )
DOI: 10.1080/00914037.2016.1201828
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/00914037.2016.1201828
Thanks:
The authors are grateful for the financial support received from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R Project (including Feder funds) and the BES-2011-046144 grant. The ...[+]
Type: Artículo

References

Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. doi:10.1016/j.addr.2012.09.010

Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C, 45, 690-697. doi:10.1016/j.msec.2014.04.026

Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., … Khademhosseini, A. (2013). 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 26(1), 85-124. doi:10.1002/adma.201303233 [+]
Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. doi:10.1016/j.addr.2012.09.010

Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C, 45, 690-697. doi:10.1016/j.msec.2014.04.026

Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., … Khademhosseini, A. (2013). 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 26(1), 85-124. doi:10.1002/adma.201303233

Levett, P. A., Melchels, F. P. W., Schrobback, K., Hutmacher, D. W., Malda, J., & Klein, T. J. (2013). Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. Journal of Biomedical Materials Research Part A, 102(8), 2544-2553. doi:10.1002/jbm.a.34924

Chopra, A., Lin, V., McCollough, A., Atzet, S., Prestwich, G. D., Wechsler, A. S., … Janmey, P. A. (2012). Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. Journal of Biomechanics, 45(5), 824-831. doi:10.1016/j.jbiomech.2011.11.023

Turner, W. S., Schmelzer, E., McClelland, R., Wauthier, E., Chen, W., & Reid, L. M. (2007). Human hepatoblast phenotype maintained by hyaluronan hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82B(1), 156-168. doi:10.1002/jbm.b.30717

Zhou, Z., Chen, J., Peng, C., Huang, T., Zhou, H., Ou, B., … Xiang, L. (2014). Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. Journal of Macromolecular Science, Part A, 51(4), 318-325. doi:10.1080/10601325.2014.882693

Lee, Y., Bae, J. W., Oh, D. H., Park, K. M., Chun, Y. W., Sung, H.-J., & Park, K. D. (2013). In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of Materials Chemistry B, 1(18), 2407. doi:10.1039/c3tb00578j

Liu, Y., Ren, L., & Wang, Y. (2013). Crosslinked collagen–gelatin–hyaluronic acid biomimetic film for cornea tissue engineering applications. Materials Science and Engineering: C, 33(1), 196-201. doi:10.1016/j.msec.2012.08.030

Taubenberger, A. V., Woodruff, M. A., Bai, H., Muller, D. J., & Hutmacher, D. W. (2010). The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials, 31(10), 2827-2835. doi:10.1016/j.biomaterials.2009.12.051

Da Silva, M. A., Bode, F., Grillo, I., & Dreiss, C. A. (2015). Exploring the Kinetics of Gelation and Final Architecture of Enzymatically Cross-Linked Chitosan/Gelatin Gels. Biomacromolecules, 16(4), 1401-1409. doi:10.1021/acs.biomac.5b00205

Bigi, A. (1998). Drawn gelatin films with improved mechanical properties. Biomaterials, 19(24), 2335-2340. doi:10.1016/s0142-9612(98)00149-5

Olde Damink, L. H. H., Dijkstra, P. J., Van Luyn, M. J. A., Van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1995). Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science: Materials in Medicine, 6(8), 460-472. doi:10.1007/bf00123371

Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41(6), 2193-2221. doi:10.1039/c1cs15203c

Van Tomme, S. R., Storm, G., & Hennink, W. E. (2008). In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 355(1-2), 1-18. doi:10.1016/j.ijpharm.2008.01.057

Bae, K. H., Wang, L.-S., & Kurisawa, M. (2013). Injectable biodegradable hydrogels: progress and challenges. Journal of Materials Chemistry B, 1(40), 5371. doi:10.1039/c3tb20940g

Kurisawa, M., Chung, J. E., Yang, Y. Y., Gao, S. J., & Uyama, H. (2005). Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chemical Communications, (34), 4312. doi:10.1039/b506989k

JIN, R., HIEMSTRA, C., ZHONG, Z., & FEIJEN, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. doi:10.1016/j.biomaterials.2007.02.032

Sakai, S., Hirose, K., Taguchi, K., Ogushi, Y., & Kawakami, K. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 30(20), 3371-3377. doi:10.1016/j.biomaterials.2009.03.030

Chuang, C.-H., Lin, R.-Z., Tien, H.-W., Chu, Y.-C., Li, Y.-C., Melero-Martin, J. M., & Chen, Y.-C. (2015). Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta Biomaterialia, 19, 85-99. doi:10.1016/j.actbio.2015.02.024

Poveda-Reyes, S., Mellera-Oglialoro, L. R., Martínez-Haya, R., Gamboa-Martínez, T. C., Gómez Ribelles, J. L., & Gallego Ferrer, G. (2015). Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production. Macromolecular Materials and Engineering, 300(10), 977-988. doi:10.1002/mame.201500033

Poveda-Reyes, S., Rodrigo-Navarro, A., Gamboa-Martínez, T. C., Rodíguez-Cabello, J. C., Quintanilla-Sierra, L., Edlund, U., & Ferrer, G. G. (2015). Injectable composites of loose microfibers and gelatin with improved interfacial interaction for soft tissue engineering. Polymer, 74, 224-234. doi:10.1016/j.polymer.2015.08.018

Shin, H., Olsen, B. D., & Khademhosseini, A. (2012). The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials, 33(11), 3143-3152. doi:10.1016/j.biomaterials.2011.12.050

Levett, P. A., Hutmacher, D. W., Malda, J., & Klein, T. J. (2014). Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs. PLoS ONE, 9(12), e113216. doi:10.1371/journal.pone.0113216

Levett, P. A., Melchels, F. P. W., Schrobback, K., Hutmacher, D. W., Malda, J., & Klein, T. J. (2014). A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 10(1), 214-223. doi:10.1016/j.actbio.2013.10.005

Epstein-Barash, H., Stefanescu, C. F., & Kohane, D. S. (2012). An in situ cross-linking hybrid hydrogel for controlled release of proteins. Acta Biomaterialia, 8(5), 1703-1709. doi:10.1016/j.actbio.2012.01.028

Heris, H. K., Rahmat, M., & Mongeau, L. (2011). Characterization of a Hierarchical Network of Hyaluronic Acid/Gelatin Composite for use as a Smart Injectable Biomaterial. Macromolecular Bioscience, 12(2), 202-210. doi:10.1002/mabi.201100335

Tuin, A., Zandstra, J., Kluijtmans, S., Bouwstra, J., Harmsen, M., & Van Luyn, M. (2012). Hyaluronic acid-recombinant gelatin gels as a scaffold for soft tissue regeneration. European Cells and Materials, 24, 320-330. doi:10.22203/ecm.v024a23

Chen, Y.-C., Su, W.-Y., Yang, S.-H., Gefen, A., & Lin, F.-H. (2013). In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomaterialia, 9(2), 5181-5193. doi:10.1016/j.actbio.2012.09.039

Darr, A., & Calabro, A. (2008). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine, 20(1), 33-44. doi:10.1007/s10856-008-3540-0

Hong, P., Koza, S., & Bouvier, E. S. P. (2012). A REVIEW SIZE-EXCLUSION CHROMATOGRAPHY FOR THE ANALYSIS OF PROTEIN BIOTHERAPEUTICS AND THEIR AGGREGATES. Journal of Liquid Chromatography & Related Technologies, 35(20), 2923-2950. doi:10.1080/10826076.2012.743724

Sun, S., Cao, H., Su, H., & Tan, T. (2009). Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polymer Bulletin, 62(5), 699-711. doi:10.1007/s00289-009-0048-9

Kim, K. S., Park, S. J., Yang, J.-A., Jeon, J.-H., Bhang, S. H., Kim, B.-S., & Hahn, S. K. (2011). Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomaterialia, 7(2), 666-674. doi:10.1016/j.actbio.2010.09.030

Kobayashi, S., Uyama, H., & Kimura, S. (2001). Enzymatic Polymerization. Chemical Reviews, 101(12), 3793-3818. doi:10.1021/cr990121l

Oudgenoeg, G., Hilhorst, R., Piersma, S. R., Boeriu, C. G., Gruppen, H., Hessing, M., … Laane, C. (2001). Peroxidase-Mediated Cross-Linking of a Tyrosine-Containing Peptide with Ferulic Acid. Journal of Agricultural and Food Chemistry, 49(5), 2503-2510. doi:10.1021/jf000906o

Kvam, B. J., Atzori, M., Toffanin, R., Paoletti, S., & Biviano, F. (1992). 1H- and 13C-NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen-bond patterns and conformational behaviour. Carbohydrate Research, 230(1), 1-13. doi:10.1016/s0008-6215(00)90509-3

Lee, F., Chung, J. E., & Kurisawa, M. (2008). An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter, 4(4), 880. doi:10.1039/b719557e

Young, T.-H., Cheng, C.-K., Lee, Y.-M., Chen, L.-Y., & Huang, C.-H. (1999). Analysis of ultrahigh molecular weight polyethylene failure in artificial knee joints: Thermal effect on long-term performance. Journal of Biomedical Materials Research, 48(2), 159-164. doi:10.1002/(sici)1097-4636(1999)48:2<159::aid-jbm10>3.0.co;2-1

Camci-Unal, G., Cuttica, D., Annabi, N., Demarchi, D., & Khademhosseini, A. (2013). Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 14(4), 1085-1092. doi:10.1021/bm3019856

Wang, L.-S., Chung, J. E., Pui-Yik Chan, P., & Kurisawa, M. (2010). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31(6), 1148-1157. doi:10.1016/j.biomaterials.2009.10.042

Fan, Z., Zhang, Y., Fang, S., Xu, C., & Li, X. (2015). Bienzymatically crosslinked gelatin/hyaluronic acid interpenetrating network hydrogels: preparation and characterization. RSC Advances, 5(3), 1929-1936. doi:10.1039/c4ra12446d

Shu, X. Z., Liu, Y., Palumbo, F., & Prestwich, G. D. (2003). Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials, 24(21), 3825-3834. doi:10.1016/s0142-9612(03)00267-9

Zhou, Z., Yang, Z., Kong, L., Liu, L., Liu, Q., Zhao, Y., … Cao, D. (2012). Preparation and Characterization of Hyaluronic Acid Hydrogel Blends with Gelatin. Journal of Macromolecular Science, Part B, 51(12), 2392-2400. doi:10.1080/00222348.2012.676355

Erickson, I. E., Huang, A. H., Sengupta, S., Kestle, S., Burdick, J. A., & Mauck, R. L. (2009). Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthritis and Cartilage, 17(12), 1639-1648. doi:10.1016/j.joca.2009.07.003

Kalyanam, S., Yapp, R. D., & Insana, M. F. (2009). Poro-Viscoelastic Behavior of Gelatin Hydrogels Under Compression-Implications for Bioelasticity Imaging. Journal of Biomechanical Engineering, 131(8). doi:10.1115/1.3127250

Tierney, C. M., Haugh, M. G., Liedl, J., Mulcahy, F., Hayes, B., & O’Brien, F. J. (2009). The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2(2), 202-209. doi:10.1016/j.jmbbm.2008.08.007

[-]

This item appears in the following Collection(s)

Show full item record