- -

Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanmartín-Masiá, Esther es_ES
dc.contributor.author Poveda-Reyes, Sara es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.date.accessioned 2018-09-17T07:19:00Z
dc.date.available 2018-09-17T07:19:00Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0091-4037 es_ES
dc.identifier.uri http://hdl.handle.net/10251/107376
dc.description.abstract [EN] Gelatin injectable hydrogels have attracted attention for soft tissues regeneration; however, their poor mechanical properties limit their applications. The authors present a versatile strategy to enhance mechanical properties by mixing gelatin (Gel) with different proportions of hyaluronic acid (HA). The protein-polysaccharide systems are inspired by extracellular matrix and benefit from adhesive properties of RGD sequences in Gel and enhanced hydration and stiffness of HA. The authors were able to raise the Young s modulus from 4kPa to 6kPa and gelation times can be tuned between 4 to 9 min, giving surgeons the option of adapting the material to specific requirements. es_ES
dc.description.sponsorship The authors are grateful for the financial support received from the Spanish Ministry of Economy and Competitiveness through the MAT2013-46467-C4-1-R Project (including Feder funds) and the BES-2011-046144 grant. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011, "Iniciativa Ingenio 2010," Consolider Program. CIBER actions are financed by the "Instituto de Salud Carlos III" with assistance from the European Regional Development Fund. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Polymeric Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Enhanced mechanical properties es_ES
dc.subject Enzymatic crosslinking es_ES
dc.subject Gelatin es_ES
dc.subject Hyaluronic acid es_ES
dc.subject Injectable hydrogels es_ES
dc.subject Protein-polysaccharide hydrogel es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00914037.2016.1201828 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-046144/ES/BES-2011-046144/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Sanmartín-Masiá, E.; Poveda-Reyes, S.; Gallego Ferrer, G. (2017). Extracellular matrix inspired gelatin/hyaluronic acid injectable hydrogels. International Journal of Polymeric Materials. 66(6):280-288. https://doi.org/10.1080/00914037.2016.1201828 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/00914037.2016.1201828 es_ES
dc.description.upvformatpinicio 280 es_ES
dc.description.upvformatpfin 288 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 66 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\328692 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18-23. doi:10.1016/j.addr.2012.09.010 es_ES
dc.description.references Toh, W. S., & Loh, X. J. (2014). Advances in hydrogel delivery systems for tissue regeneration. Materials Science and Engineering: C, 45, 690-697. doi:10.1016/j.msec.2014.04.026 es_ES
dc.description.references Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., … Khademhosseini, A. (2013). 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Advanced Materials, 26(1), 85-124. doi:10.1002/adma.201303233 es_ES
dc.description.references Levett, P. A., Melchels, F. P. W., Schrobback, K., Hutmacher, D. W., Malda, J., & Klein, T. J. (2013). Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. Journal of Biomedical Materials Research Part A, 102(8), 2544-2553. doi:10.1002/jbm.a.34924 es_ES
dc.description.references Chopra, A., Lin, V., McCollough, A., Atzet, S., Prestwich, G. D., Wechsler, A. S., … Janmey, P. A. (2012). Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors. Journal of Biomechanics, 45(5), 824-831. doi:10.1016/j.jbiomech.2011.11.023 es_ES
dc.description.references Turner, W. S., Schmelzer, E., McClelland, R., Wauthier, E., Chen, W., & Reid, L. M. (2007). Human hepatoblast phenotype maintained by hyaluronan hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82B(1), 156-168. doi:10.1002/jbm.b.30717 es_ES
dc.description.references Zhou, Z., Chen, J., Peng, C., Huang, T., Zhou, H., Ou, B., … Xiang, L. (2014). Fabrication and Physical Properties of Gelatin/Sodium Alginate/Hyaluronic Acid Composite Wound Dressing Hydrogel. Journal of Macromolecular Science, Part A, 51(4), 318-325. doi:10.1080/10601325.2014.882693 es_ES
dc.description.references Lee, Y., Bae, J. W., Oh, D. H., Park, K. M., Chun, Y. W., Sung, H.-J., & Park, K. D. (2013). In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. Journal of Materials Chemistry B, 1(18), 2407. doi:10.1039/c3tb00578j es_ES
dc.description.references Liu, Y., Ren, L., & Wang, Y. (2013). Crosslinked collagen–gelatin–hyaluronic acid biomimetic film for cornea tissue engineering applications. Materials Science and Engineering: C, 33(1), 196-201. doi:10.1016/j.msec.2012.08.030 es_ES
dc.description.references Taubenberger, A. V., Woodruff, M. A., Bai, H., Muller, D. J., & Hutmacher, D. W. (2010). The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation. Biomaterials, 31(10), 2827-2835. doi:10.1016/j.biomaterials.2009.12.051 es_ES
dc.description.references Da Silva, M. A., Bode, F., Grillo, I., & Dreiss, C. A. (2015). Exploring the Kinetics of Gelation and Final Architecture of Enzymatically Cross-Linked Chitosan/Gelatin Gels. Biomacromolecules, 16(4), 1401-1409. doi:10.1021/acs.biomac.5b00205 es_ES
dc.description.references Bigi, A. (1998). Drawn gelatin films with improved mechanical properties. Biomaterials, 19(24), 2335-2340. doi:10.1016/s0142-9612(98)00149-5 es_ES
dc.description.references Olde Damink, L. H. H., Dijkstra, P. J., Van Luyn, M. J. A., Van Wachem, P. B., Nieuwenhuis, P., & Feijen, J. (1995). Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science: Materials in Medicine, 6(8), 460-472. doi:10.1007/bf00123371 es_ES
dc.description.references Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev., 41(6), 2193-2221. doi:10.1039/c1cs15203c es_ES
dc.description.references Van Tomme, S. R., Storm, G., & Hennink, W. E. (2008). In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 355(1-2), 1-18. doi:10.1016/j.ijpharm.2008.01.057 es_ES
dc.description.references Bae, K. H., Wang, L.-S., & Kurisawa, M. (2013). Injectable biodegradable hydrogels: progress and challenges. Journal of Materials Chemistry B, 1(40), 5371. doi:10.1039/c3tb20940g es_ES
dc.description.references Kurisawa, M., Chung, J. E., Yang, Y. Y., Gao, S. J., & Uyama, H. (2005). Injectable biodegradable hydrogels composed of hyaluronic acid–tyramine conjugates for drug delivery and tissue engineering. Chemical Communications, (34), 4312. doi:10.1039/b506989k es_ES
dc.description.references JIN, R., HIEMSTRA, C., ZHONG, Z., & FEIJEN, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. doi:10.1016/j.biomaterials.2007.02.032 es_ES
dc.description.references Sakai, S., Hirose, K., Taguchi, K., Ogushi, Y., & Kawakami, K. (2009). An injectable, in situ enzymatically gellable, gelatin derivative for drug delivery and tissue engineering. Biomaterials, 30(20), 3371-3377. doi:10.1016/j.biomaterials.2009.03.030 es_ES
dc.description.references Chuang, C.-H., Lin, R.-Z., Tien, H.-W., Chu, Y.-C., Li, Y.-C., Melero-Martin, J. M., & Chen, Y.-C. (2015). Enzymatic regulation of functional vascular networks using gelatin hydrogels. Acta Biomaterialia, 19, 85-99. doi:10.1016/j.actbio.2015.02.024 es_ES
dc.description.references Poveda-Reyes, S., Mellera-Oglialoro, L. R., Martínez-Haya, R., Gamboa-Martínez, T. C., Gómez Ribelles, J. L., & Gallego Ferrer, G. (2015). Reinforcing an Injectable Gelatin Hydrogel with PLLA Microfibers: Two Routes for Short Fiber Production. Macromolecular Materials and Engineering, 300(10), 977-988. doi:10.1002/mame.201500033 es_ES
dc.description.references Poveda-Reyes, S., Rodrigo-Navarro, A., Gamboa-Martínez, T. C., Rodíguez-Cabello, J. C., Quintanilla-Sierra, L., Edlund, U., & Ferrer, G. G. (2015). Injectable composites of loose microfibers and gelatin with improved interfacial interaction for soft tissue engineering. Polymer, 74, 224-234. doi:10.1016/j.polymer.2015.08.018 es_ES
dc.description.references Shin, H., Olsen, B. D., & Khademhosseini, A. (2012). The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials, 33(11), 3143-3152. doi:10.1016/j.biomaterials.2011.12.050 es_ES
dc.description.references Levett, P. A., Hutmacher, D. W., Malda, J., & Klein, T. J. (2014). Hyaluronic Acid Enhances the Mechanical Properties of Tissue-Engineered Cartilage Constructs. PLoS ONE, 9(12), e113216. doi:10.1371/journal.pone.0113216 es_ES
dc.description.references Levett, P. A., Melchels, F. P. W., Schrobback, K., Hutmacher, D. W., Malda, J., & Klein, T. J. (2014). A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 10(1), 214-223. doi:10.1016/j.actbio.2013.10.005 es_ES
dc.description.references Epstein-Barash, H., Stefanescu, C. F., & Kohane, D. S. (2012). An in situ cross-linking hybrid hydrogel for controlled release of proteins. Acta Biomaterialia, 8(5), 1703-1709. doi:10.1016/j.actbio.2012.01.028 es_ES
dc.description.references Heris, H. K., Rahmat, M., & Mongeau, L. (2011). Characterization of a Hierarchical Network of Hyaluronic Acid/Gelatin Composite for use as a Smart Injectable Biomaterial. Macromolecular Bioscience, 12(2), 202-210. doi:10.1002/mabi.201100335 es_ES
dc.description.references Tuin, A., Zandstra, J., Kluijtmans, S., Bouwstra, J., Harmsen, M., & Van Luyn, M. (2012). Hyaluronic acid-recombinant gelatin gels as a scaffold for soft tissue regeneration. European Cells and Materials, 24, 320-330. doi:10.22203/ecm.v024a23 es_ES
dc.description.references Chen, Y.-C., Su, W.-Y., Yang, S.-H., Gefen, A., & Lin, F.-H. (2013). In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomaterialia, 9(2), 5181-5193. doi:10.1016/j.actbio.2012.09.039 es_ES
dc.description.references Darr, A., & Calabro, A. (2008). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine, 20(1), 33-44. doi:10.1007/s10856-008-3540-0 es_ES
dc.description.references Hong, P., Koza, S., & Bouvier, E. S. P. (2012). A REVIEW SIZE-EXCLUSION CHROMATOGRAPHY FOR THE ANALYSIS OF PROTEIN BIOTHERAPEUTICS AND THEIR AGGREGATES. Journal of Liquid Chromatography & Related Technologies, 35(20), 2923-2950. doi:10.1080/10826076.2012.743724 es_ES
dc.description.references Sun, S., Cao, H., Su, H., & Tan, T. (2009). Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polymer Bulletin, 62(5), 699-711. doi:10.1007/s00289-009-0048-9 es_ES
dc.description.references Kim, K. S., Park, S. J., Yang, J.-A., Jeon, J.-H., Bhang, S. H., Kim, B.-S., & Hahn, S. K. (2011). Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomaterialia, 7(2), 666-674. doi:10.1016/j.actbio.2010.09.030 es_ES
dc.description.references Kobayashi, S., Uyama, H., & Kimura, S. (2001). Enzymatic Polymerization. Chemical Reviews, 101(12), 3793-3818. doi:10.1021/cr990121l es_ES
dc.description.references Oudgenoeg, G., Hilhorst, R., Piersma, S. R., Boeriu, C. G., Gruppen, H., Hessing, M., … Laane, C. (2001). Peroxidase-Mediated Cross-Linking of a Tyrosine-Containing Peptide with Ferulic Acid. Journal of Agricultural and Food Chemistry, 49(5), 2503-2510. doi:10.1021/jf000906o es_ES
dc.description.references Kvam, B. J., Atzori, M., Toffanin, R., Paoletti, S., & Biviano, F. (1992). 1H- and 13C-NMR studies of solutions of hyaluronic acid esters and salts in methyl sulfoxide: comparison of hydrogen-bond patterns and conformational behaviour. Carbohydrate Research, 230(1), 1-13. doi:10.1016/s0008-6215(00)90509-3 es_ES
dc.description.references Lee, F., Chung, J. E., & Kurisawa, M. (2008). An injectable enzymatically crosslinked hyaluronic acid–tyramine hydrogel system with independent tuning of mechanical strength and gelation rate. Soft Matter, 4(4), 880. doi:10.1039/b719557e es_ES
dc.description.references Young, T.-H., Cheng, C.-K., Lee, Y.-M., Chen, L.-Y., & Huang, C.-H. (1999). Analysis of ultrahigh molecular weight polyethylene failure in artificial knee joints: Thermal effect on long-term performance. Journal of Biomedical Materials Research, 48(2), 159-164. doi:10.1002/(sici)1097-4636(1999)48:2<159::aid-jbm10>3.0.co;2-1 es_ES
dc.description.references Camci-Unal, G., Cuttica, D., Annabi, N., Demarchi, D., & Khademhosseini, A. (2013). Synthesis and Characterization of Hybrid Hyaluronic Acid-Gelatin Hydrogels. Biomacromolecules, 14(4), 1085-1092. doi:10.1021/bm3019856 es_ES
dc.description.references Wang, L.-S., Chung, J. E., Pui-Yik Chan, P., & Kurisawa, M. (2010). Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials, 31(6), 1148-1157. doi:10.1016/j.biomaterials.2009.10.042 es_ES
dc.description.references Fan, Z., Zhang, Y., Fang, S., Xu, C., & Li, X. (2015). Bienzymatically crosslinked gelatin/hyaluronic acid interpenetrating network hydrogels: preparation and characterization. RSC Advances, 5(3), 1929-1936. doi:10.1039/c4ra12446d es_ES
dc.description.references Shu, X. Z., Liu, Y., Palumbo, F., & Prestwich, G. D. (2003). Disulfide-crosslinked hyaluronan-gelatin hydrogel films: a covalent mimic of the extracellular matrix for in vitro cell growth. Biomaterials, 24(21), 3825-3834. doi:10.1016/s0142-9612(03)00267-9 es_ES
dc.description.references Zhou, Z., Yang, Z., Kong, L., Liu, L., Liu, Q., Zhao, Y., … Cao, D. (2012). Preparation and Characterization of Hyaluronic Acid Hydrogel Blends with Gelatin. Journal of Macromolecular Science, Part B, 51(12), 2392-2400. doi:10.1080/00222348.2012.676355 es_ES
dc.description.references Erickson, I. E., Huang, A. H., Sengupta, S., Kestle, S., Burdick, J. A., & Mauck, R. L. (2009). Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthritis and Cartilage, 17(12), 1639-1648. doi:10.1016/j.joca.2009.07.003 es_ES
dc.description.references Kalyanam, S., Yapp, R. D., & Insana, M. F. (2009). Poro-Viscoelastic Behavior of Gelatin Hydrogels Under Compression-Implications for Bioelasticity Imaging. Journal of Biomechanical Engineering, 131(8). doi:10.1115/1.3127250 es_ES
dc.description.references Tierney, C. M., Haugh, M. G., Liedl, J., Mulcahy, F., Hayes, B., & O’Brien, F. J. (2009). The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2(2), 202-209. doi:10.1016/j.jmbbm.2008.08.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem