Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)
Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015)
Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716)
[+]
Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)
Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015)
Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716)
Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. In: Séminaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., Palaiseau
Bonet, J., Fernández, C., Meise, R.: Characterization of the $$\omega $$ ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000)
Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007)
Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)
Fernández, C., Galbis, A., Jornet, D.: $$\omega $$ ω -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297, 561–576 (2004)
Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008)
Hörmander, L.: On interior regularity of the solutions of partial differential equations. Comm. Pure Appl. Math. XI, 197–218 (1958)
Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971)
Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990)
Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1983)
Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010)
Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Math. 208(1), 31–46 (2012)
Komatsu, H.: A characterization of real analytic functions. Proc. Jpn. Acad. 36, 90–93 (1960)
Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962)
Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979)
Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979)
Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985)
Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987)
Métivier, G.: Propriété des itérés et ellipticité. Comm. Partial Differ. Equ. 3(9), 827–876 (1978)
Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Amer. Math. Soc. 39(3), 547–552 (1973)
Rodino, L.: On the problem of the hypoellipticity of the linear partial differential equations. In: Buttazzo, G. (ed.) Developments in Partial Differential Equations and Applications to Mathematical Physics. Plenum Press, New York (1992)
Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific, Singapore (1993)
Zanghirati, L.: Iterates of a class of hypoelliptic operators and generalized Gevrey classes. Boll. U.M.I. Suppl. 1, 177–195 (1980)
[-]