Mostrar el registro sencillo del ítem
dc.contributor.author | Boiti, Chiara | es_ES |
dc.contributor.author | Jornet Casanova, David | es_ES |
dc.date.accessioned | 2018-09-17T07:32:55Z | |
dc.date.available | 2018-09-17T07:32:55Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1578-7303 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/107399 | |
dc.description.abstract | [EN] We characterize the wave front set WF*P (u) with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution u is an element of D '(Omega), Omega an open subset in R-n. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type. | es_ES |
dc.description.sponsorship | The authors were partially supported by FAR2011 (Universita di Ferrara), "Fondi per le necessita di base della ricerca" 2012 and 2013 (Universita di Ferrara) and the INDAM-GNAMPA Project 2014 "Equazioni Differenziali a Derivate Parziali di Evoluzione e Stocastiche" The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Iterates of an operator | es_ES |
dc.subject | Wave front set | es_ES |
dc.subject | Ultradifferentiable functions | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A characterization of the wave front set defined by the iterates of an operator with constant coefficients | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s13398-016-0329-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Boiti, C.; Jornet Casanova, D. (2017). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(3):891-919. https://doi.org/10.1007/s13398-016-0329-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s13398-016-0329-8 | es_ES |
dc.description.upvformatpinicio | 891 | es_ES |
dc.description.upvformatpfin | 919 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 111 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\350789 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010) | es_ES |
dc.description.references | Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015) | es_ES |
dc.description.references | Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716) | es_ES |
dc.description.references | Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. In: Séminaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., Palaiseau | es_ES |
dc.description.references | Bonet, J., Fernández, C., Meise, R.: Characterization of the $$\omega $$ ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000) | es_ES |
dc.description.references | Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007) | es_ES |
dc.description.references | Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990) | es_ES |
dc.description.references | Fernández, C., Galbis, A., Jornet, D.: $$\omega $$ ω -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297, 561–576 (2004) | es_ES |
dc.description.references | Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008) | es_ES |
dc.description.references | Hörmander, L.: On interior regularity of the solutions of partial differential equations. Comm. Pure Appl. Math. XI, 197–218 (1958) | es_ES |
dc.description.references | Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971) | es_ES |
dc.description.references | Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990) | es_ES |
dc.description.references | Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1983) | es_ES |
dc.description.references | Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010) | es_ES |
dc.description.references | Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Math. 208(1), 31–46 (2012) | es_ES |
dc.description.references | Komatsu, H.: A characterization of real analytic functions. Proc. Jpn. Acad. 36, 90–93 (1960) | es_ES |
dc.description.references | Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962) | es_ES |
dc.description.references | Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979) | es_ES |
dc.description.references | Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979) | es_ES |
dc.description.references | Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985) | es_ES |
dc.description.references | Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987) | es_ES |
dc.description.references | Métivier, G.: Propriété des itérés et ellipticité. Comm. Partial Differ. Equ. 3(9), 827–876 (1978) | es_ES |
dc.description.references | Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Amer. Math. Soc. 39(3), 547–552 (1973) | es_ES |
dc.description.references | Rodino, L.: On the problem of the hypoellipticity of the linear partial differential equations. In: Buttazzo, G. (ed.) Developments in Partial Differential Equations and Applications to Mathematical Physics. Plenum Press, New York (1992) | es_ES |
dc.description.references | Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific, Singapore (1993) | es_ES |
dc.description.references | Zanghirati, L.: Iterates of a class of hypoelliptic operators and generalized Gevrey classes. Boll. U.M.I. Suppl. 1, 177–195 (1980) | es_ES |