- -

A characterization of the wave front set defined by the iterates of an operator with constant coefficients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A characterization of the wave front set defined by the iterates of an operator with constant coefficients

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boiti, Chiara es_ES
dc.contributor.author Jornet Casanova, David es_ES
dc.date.accessioned 2018-09-17T07:32:55Z
dc.date.available 2018-09-17T07:32:55Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1578-7303 es_ES
dc.identifier.uri http://hdl.handle.net/10251/107399
dc.description.abstract [EN] We characterize the wave front set WF*P (u) with respect to the iterates of a linear partial differential operator with constant coefficients of a classical distribution u is an element of D '(Omega), Omega an open subset in R-n. We use recent Paley-Wiener theorems for generalized ultradifferentiable classes in the sense of Braun, Meise and Taylor. We also give several examples and applications to the regularity of operators with variable coefficients and constant strength. Finally, we construct a distribution with prescribed wave front set of this type. es_ES
dc.description.sponsorship The authors were partially supported by FAR2011 (Universita di Ferrara), "Fondi per le necessita di base della ricerca" 2012 and 2013 (Universita di Ferrara) and the INDAM-GNAMPA Project 2014 "Equazioni Differenziali a Derivate Parziali di Evoluzione e Stocastiche" The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Iterates of an operator es_ES
dc.subject Wave front set es_ES
dc.subject Ultradifferentiable functions es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A characterization of the wave front set defined by the iterates of an operator with constant coefficients es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s13398-016-0329-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Boiti, C.; Jornet Casanova, D. (2017). A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 111(3):891-919. https://doi.org/10.1007/s13398-016-0329-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s13398-016-0329-8 es_ES
dc.description.upvformatpinicio 891 es_ES
dc.description.upvformatpfin 919 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 111 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\350789 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010) es_ES
dc.description.references Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015) es_ES
dc.description.references Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716) es_ES
dc.description.references Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. In: Séminaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., Palaiseau es_ES
dc.description.references Bonet, J., Fernández, C., Meise, R.: Characterization of the $$\omega $$ ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000) es_ES
dc.description.references Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14, 425–444 (2007) es_ES
dc.description.references Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990) es_ES
dc.description.references Fernández, C., Galbis, A., Jornet, D.: $$\omega $$ ω -hypoelliptic differential operators of constant strength. J. Math. Anal. Appl. 297, 561–576 (2004) es_ES
dc.description.references Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340, 1153–1170 (2008) es_ES
dc.description.references Hörmander, L.: On interior regularity of the solutions of partial differential equations. Comm. Pure Appl. Math. XI, 197–218 (1958) es_ES
dc.description.references Hörmander, L.: Uniqueness theorems and wave front sets for solutions of linear partial differential equations with analytic coefficients. Comm. Pure Appl. Math. 24, 671–704 (1971) es_ES
dc.description.references Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1990) es_ES
dc.description.references Hörmander, L.: The Analysis of Linear Partial Differential Operators II. Springer, Berlin (1983) es_ES
dc.description.references Juan-Huguet, J.: Iterates and hypoellipticity of partial differential operators on non-quasianalytic classes. Integr. Equ. Oper. Theory 68, 263–286 (2010) es_ES
dc.description.references Juan-Huguet, J.: A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Math. 208(1), 31–46 (2012) es_ES
dc.description.references Komatsu, H.: A characterization of real analytic functions. Proc. Jpn. Acad. 36, 90–93 (1960) es_ES
dc.description.references Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962) es_ES
dc.description.references Langenbruch, M.: P-Funktionale und Randwerte zu hypoelliptischen Differentialoperatoren. Math. Ann. 239(1), 55–74 (1979) es_ES
dc.description.references Langenbruch, M.: Fortsetzung von Randwerten zu hypoelliptischen Differentialoperatoren und partielle Differentialgleichungen. J. Reine Angew. Math. 311/312, 57–79 (1979) es_ES
dc.description.references Langenbruch, M.: On the functional dimension of solution spaces of hypoelliptic partial differential operators. Math. Ann. 272, 217–229 (1985) es_ES
dc.description.references Langenbruch, M.: Bases in solution sheaves of systems of partial differential equations. J. Reine Angew. Math. 373, 1–36 (1987) es_ES
dc.description.references Métivier, G.: Propriété des itérés et ellipticité. Comm. Partial Differ. Equ. 3(9), 827–876 (1978) es_ES
dc.description.references Newberger, E., Zielezny, Z.: The growth of hypoelliptic polynomials and Gevrey classes. Proc. Amer. Math. Soc. 39(3), 547–552 (1973) es_ES
dc.description.references Rodino, L.: On the problem of the hypoellipticity of the linear partial differential equations. In: Buttazzo, G. (ed.) Developments in Partial Differential Equations and Applications to Mathematical Physics. Plenum Press, New York (1992) es_ES
dc.description.references Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific, Singapore (1993) es_ES
dc.description.references Zanghirati, L.: Iterates of a class of hypoelliptic operators and generalized Gevrey classes. Boll. U.M.I. Suppl. 1, 177–195 (1980) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem