- -

Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles

Show full item record

Ortiz-Miranda, A.; Domenech Carbo, A.; Domenech Carbo, MT.; Osete Cortina, L.; Bolivar-Galiano, F.; Martín-Sánchez, I. (2017). Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles. Heritage Science. 5. https://doi.org/10.1186/s40494-017-0121-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/107466

Files in this item

Item Metadata

Title: Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles
Author: Ortiz-Miranda, Annette Domenech Carbo, Antonio Domenech Carbo, Mª Teresa Osete Cortina, Laura Bolivar-Galiano, Fernando Martín-Sánchez, Inés
UPV Unit: Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals
Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni
Issued date:
[EN] It is reported the application of the voltammetry of microparticles (VMP), complemented with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and field emission scanning electron microscopy ...[+]
Subjects: Electrochemistry , Biodeterioration , Verdigris , Cadmium sulfide , Egg tempera , Egg-oil emulsion
Copyrigths: Reconocimiento (by)
Heritage Science. (eissn: 2050-7445 )
DOI: 10.1186/s40494-017-0121-x
BioMed Central
Publisher version: http://doi.org/10.1186/s40494-017-0121-x
Project ID:
This work as been performed by members of the microcluster Grupo de analisis cientifico de bienes culturales y patrimoniales y estudios de ciencia de la conservacion (Ref. 1362) belonging to the Valencia International ...[+]
Type: Artículo


Matteini M, Moles A. La Chimica nel Restauro. Firenze: Nardini; 1989.

Mills JS, White R. The organic chemistry of museum objects. London: Buttersworth; 1994.

Breitbach AM, Rocha JC, Gaylarde CC. Influence of pigment on biodeterioration of acrylic paint films in Southern Brazil. J Coat Technol Res. 2011;8:619–28. [+]
Matteini M, Moles A. La Chimica nel Restauro. Firenze: Nardini; 1989.

Mills JS, White R. The organic chemistry of museum objects. London: Buttersworth; 1994.

Breitbach AM, Rocha JC, Gaylarde CC. Influence of pigment on biodeterioration of acrylic paint films in Southern Brazil. J Coat Technol Res. 2011;8:619–28.

Meilunas RJ, Bentsen JG, Steinberg A. Analysis of aged paint binders by FTIR Spectroscopy. Stud Conserv. 1990;35:33–51.

Mallégol J, Lemaire J, Gardette JL. Drier influence on the curing of linseed oil. Progr Org Coat. 2009;39:107–13.

Erhardt D, Tumosa CS, Mecklenburg MF. Long-term chemical and physical processes in oil paint films. Stud Conserv. 2005;50:143–50.

Keune K, van Loon A, Boon JJ. SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Micros Microanal. 2011. doi: 10.1017/S1431927610094444 .

Plater MJ, De Silva B, Gelbrich T, Hursthouse MB, Higgitt CL, Saunders DR. The characterization of lead fatty acid soaps in “protusions” in aged traditional oil paint”. Polyhedron. 2003;22:3171–9.

Robinet L, Corbeil MC. The characterization of metal soaps. Stud Conserv. 2003;48:23–40.

Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M. Attenuated total reflection micro FTIR characterization of pigment-binder interaction in reconstructed paint films. Anal Bioanal Chem. 2008;392:65–76.

Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta. 2009;79:419–28.

Genestar C, Pons C. Earth pigments in painting: characterization and differentiation by means FTIR spectroscopy. Anal Bioanal Chem. 2005;382:269–74.

Scholz F, Meyer B. Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem. 1998;20:1–86.

Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A. Electrochemistry of Immobilized Particles and Droplets, 2nd edit. Berlin-Heidelberg: Springer; 2014.

Doménech-Carbó A, Labuda J, Scholz F. Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem. 2013;85:609–31.

Doménech-Carbó A, Doménech-Carbó MT, Costa V. Electrochemical methods for archaeometry, conservation and restoration (Monographs in Electrochemistry Series Scholz F Edit). Berlin-Heidelberg: Springer; 2009.

Doménech-Carbó A. Electrochemistry for conservation science. J Solid State Electrochem. 2010;14:349–51.

Ortiz-Miranda AS, Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Bolívar-Galiano FF, Martín-Sánchez I, López-Miras MM. Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. J Solid State Electrochem. 2016;20:3287–302.

Kühn H. Verdigris and copper resinate, in artists’ pigments. In: Roy A, editor. A handbook of their history and characteristics, vol. 2. Oxford: University Press; 1993.

Bilardi CR. The red church or the art of Pennsylvania German Braucherei. Los Angeles: Pendraig Publications; 2009.

Doménech-Carbó A, Doménech-Carbó MT, Moya-Moreno M, Gimeno-Adelantado JV, Bosch-Reig F. Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta. 2000;407:275–89.

Ciferri O. Microbial degradation of paintings Appl. Environ Microbiol. 1999;65:879–85.

Giacobini C, Firpi M. Problemi di microbiologia nei dipinti su tela Opificio delle Pietre Dure e Laboratorio di Restauro di Firenze. Atti del Convenzione sul Restauro delle Opere d’Arte. Florence: Edizioni Polistampa; 1981. p. 203–11.

Giacobini C, De Cicco MA, Tiglie I, Accardo G. Actinomycetes and biodeterioration in the field of fine art. In: Houghton DR, Smith RN, Eggins HOW, editors. biodeterioration, vol. 7. New York: Elsevier; 1988. p. 418–23.

Giacobini C, Pedica M, Spinucci M. 31 Problems and future projects on the study of biodeterioration: mural and canvas paintings. In: Proceedings of the 1st international conference on the biodeterioration of cultural property. New Delhi: Macmillan India; 1991. p. 275–286.

Ross RT. Microbiology of paint films. Adv Appl Microbiol. 1963;5:217–34.

Seves AM, Sora S, Ciferri O. The microbial colonization of oil paintings. A laboratory investigation. Int Biodeter Biodegr. 1996;37:215–24.

Strelczyc A. Paintings and sculptures. In: Rose AH, editor. Microbialdeterioration. London: Academic; 1981. p. 203–34.

Walsh JH. Ecological considerations of biodeterioration. Int. Biodeter. Biodegr. 2001;48:16–25.

Zyska BJ. Problems of microbial deterioration of materials in Eastern Europe. Int Biodeter Biodegr. 2002;49:73–83.

Khandekar N, Phenix A. Some observations on the effects of a selection of pigments on artificially aged egg tempera paint film. Los Angeles: Typescript, GCI Museum Research Laboratory; 1999.

Ducce C, Bramanti E, Ghezzi L, Bernazzani L, Bonaduce I, Colombini MP, Sepi A, Biagi S, Tine MR. Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans. 2013;42:5945–84 (and references therein).

Miyazawa T, Blout ER. The infrared spectra of polypeptides in various conformations: amide I and II bands. J Am Chem Soc. 1961;83:712–9.

Nevskaya YN, Chirgadze NA. Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers. 1976;15:637–48.

Qing H, Yanlin H, Fenlin S, Zuyi T. Effects of pH and metal ions on the conformation of bovine serum albumin in aqueous solution. An attenuated total reflection (ATR) FTIR spectroscopic study. Spectrochim Acta A. 1996;52:1795–800.

Nara M, Morii H, Tanokura M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochim Biophys Acta. 2013;1828:2319–27.

Williams RJP. Copper-protein compounds in: the chemistry of the copper and zinc triads. Welch AJ, Chapman K, eds. Royal Society of Chemistry: Cambridge; 1993.

Williams RJP, da Silva Frausto JJR. The natural selection of the chemical elements. Oxford: Oxford Univ. Press; 1996.

Guthrie RE, Laurie SH. The binding of copper (II) to mohair keratin. Aust J Chem. 1968;21:2437–43.

Marey L, Signolle JP, Amiel C, Travert J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc. 2001;26:151–9.

Zotti M, Ferroni A, Calvini P. Mycological and FTIR analysis of biotic foxing on paper substrates. Int Biodeter Biodegr. 2011;65:569–78.

Bombalska A, Mularczyk-Oliwa M, Kwásny M, Włodarski M, Kaliszewski M, Kopczynski K, Szpakowska M, Trafny EA. Classification of the biological material with use of FTIR spectroscopy and statistical analysis. Spectrochim Acta A. 2011;78:1221–6.

Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA. Detection of the dipicolinic acid biomarker in Bacillus spores using curie-point pyrolysis mass spectrometry and fourier transform infrared spectroscopy. Anal Chem. 2000;72:119–27.

Kong J, Yu S. Fourier Transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sinica. 2007;39:549–59.

Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986;25:469–87.

Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F. On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta. 2016;927:1–12.

Zakharchuk N, Meyer S, Lange B, Scholz F. A comparative study of lead oxide modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized lead oxides. Croat Chem Acta. 2000;73:667–704.

Komorsky-Lovric S, Lovric M, Bond AM. Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Anal Chim Acta. 1992;258:299–305.

Arjmand F, Adriaens A. Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem. 2012;16:535–43.

Meyer B, Ziemer B, Scholz F. In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem. 1995;392:79–83.

Hasse U, Scholz F. In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochem Commun. 2001;3:429–34.

Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X. Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta. 2007;71:1569–79.

Doménech-Carbó A, Doménech-Carbó MT, Mas X, Ciarrocci J. Simultaneous identification of lead pigments and binding media in paint samples using voltammetry of microparticles. Arché. 2007;2:121–4.

Jaworski A, Stojek Z, Scholz F. A comparison of simulated and experimental abrasive stripping voltammetric curves of ionic crystals: reversible case. J Electroanal Chem. 1993;354:1–9.

Lovric M, Scholz F. A model for the propagation of a redox reaction thorough microcrystals. J Solid State Electrochem. 1997;1:108–13.

Lovric M, Hermes M, Scholz F. The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes. J Solid State Electrochem. 1998;2:401–4.

Oldham KB. Voltammetry at a three-phase junction. J Solid State Electrochem. 1998;2:367–77.

Lovric M, Scholz F. A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem. 1999;3:172–5.

Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F. Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. J Solid State Electrochem. 2000;4:314–24.

Reregistration Eligibility Decision (RED) for Coppers. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs. Washington, DC: U.S. Government Printing Office; 2009.

Mirkovic B, Tanovic B, Hrustic J, Mihajlovic M, Stevic M, Delibasic G, Vuksa P. Toxicity of copper hydroxide, dithianon, fluazinam, tebuconazole and pyraclostrobin to Didymella applanata isolates from Serbia. J Environ Sci Health B. 2015;50:175–83.

Biswas FB, Roy TG, Rahman MA, Emran TB. An in vitro antibacterial and antifungal effects of cadmium(II) complexes of hexamethyltetraazacyclotetradecadiene and isomers of its saturated analogue. Asian Pac J Trop Med. 2014;7(S1):S534–9.

Montazerozohori M, Zahedi S, Nasr-Esfahani M, Naghiha A. Some new cadmium complexes: antibacterial/antifungal activity and thermal behavior. J Ind Eng Chem. 2014;20:2463–70.

Montazerozohori M, Musari SA, Masoudiasl A, Naghiga A, Dusek M, Kycerakova M. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: a supramolecular structure. Spectrochim Acta A. 2015;137:389–96.

Novakova K, Navratil T, Sestakova I, Lee MP, Vodickova H, Zamecnikova B, Sokolova R, Bulickova J, Gal M. Characterization of cadmium ion transport across model and real biomembranes and indication of induced damage of plant tissues. Monatsch Chem Chem Mont. 2015;146:819–29.

Negm NA, Said MM, Morsey SM. Pyrazole derived cationic surfactants and their tin and copper complexes: synthesis activity, antibacterial and antifungal efficacy. J Surfact Deterg. 2010;13:521–8.




This item appears in the following Collection(s)

Show full item record