- -

Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles

Show simple item record

Files in this item

dc.contributor.author Ortiz-Miranda, Annette es_ES
dc.contributor.author Domenech Carbo, Antonio es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Osete Cortina, Laura es_ES
dc.contributor.author Bolivar-Galiano, Fernando es_ES
dc.contributor.author Martín-Sánchez, Inés es_ES
dc.date.accessioned 2018-09-17T08:55:52Z
dc.date.available 2018-09-17T08:55:52Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/107466
dc.description.abstract [EN] It is reported the application of the voltammetry of microparticles (VMP), complemented with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and field emission scanning electron microscopy (FESEM) techniques, to monitor the deterioration of verdigris pictorial specimens under the action of different biological agents. This methodology would be of application for identifying the type of biological agent causing deterioration of paintings, which is an important problem affecting cultural heritage. The analysis of biodeterioration processes is complicated by the fact that the action of microorganisms can affect both pigment and binding media. The deterioration of pictorial specimens combining verdigris with egg and egg-linseed oil binders by Penicillium chrysogenum, Aspergillus niger, Acremonium chrysogenum, Trychoderma pseudokoningi and Mucor rouxii fungi and Bacillus amyloliquefaciens, Arthrobacter oxydans and Streptomyces cellulofans bacteria were tested using sample-modified graphite electrodes immersed into aqueous electrolytes. A model is presented to describe the involved electrochemistry resulting in specific voltammetric features for the electrochemical reduction of verdigris associated to the proteinaceous and lipidic fractions of the binders. The experimental results and model proposed have been discussed and compared with those previously obtained for cadmium yellow reconstructed paint film specimens. es_ES
dc.description.sponsorship This work as been performed by members of the microcluster Grupo de analisis cientifico de bienes culturales y patrimoniales y estudios de ciencia de la conservacion (Ref. 1362) belonging to the Valencia International Campus of Excellence. Financial support is gratefully acknowledged from the Spanish "I+D+I MINECO" projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P supported by ERDF funds. es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation MINECO/CTQ2014-53736-C3-1-P es_ES
dc.relation.ispartof Heritage Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electrochemistry es_ES
dc.subject Biodeterioration es_ES
dc.subject Verdigris es_ES
dc.subject Cadmium sulfide es_ES
dc.subject Egg tempera es_ES
dc.subject Egg-oil emulsion es_ES
dc.subject.classification PINTURA es_ES
dc.title Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s40494-017-0121-x es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni es_ES
dc.description.bibliographicCitation Ortiz-Miranda, A.; Doménech Carbó, A.; Domenech Carbo, MT.; Osete Cortina, L.; Bolivar-Galiano, F.; Martín-Sánchez, I. (2017). Analyzing chemical changes in verdigris pictorial specimens upon bacteria and fungi biodeterioration using voltammetry of microparticles. Heritage Science. 5. doi:10.1186/s40494-017-0121-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1186/s40494-017-0121-x es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.identifier.eissn 2050-7445 es_ES
dc.relation.pasarela S\358599 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.relation.references Matteini M, Moles A. La Chimica nel Restauro. Firenze: Nardini; 1989. es_ES
dc.relation.references Mills JS, White R. The organic chemistry of museum objects. London: Buttersworth; 1994. es_ES
dc.relation.references Breitbach AM, Rocha JC, Gaylarde CC. Influence of pigment on biodeterioration of acrylic paint films in Southern Brazil. J Coat Technol Res. 2011;8:619–28. es_ES
dc.relation.references Meilunas RJ, Bentsen JG, Steinberg A. Analysis of aged paint binders by FTIR Spectroscopy. Stud Conserv. 1990;35:33–51. es_ES
dc.relation.references Mallégol J, Lemaire J, Gardette JL. Drier influence on the curing of linseed oil. Progr Org Coat. 2009;39:107–13. es_ES
dc.relation.references Erhardt D, Tumosa CS, Mecklenburg MF. Long-term chemical and physical processes in oil paint films. Stud Conserv. 2005;50:143–50. es_ES
dc.relation.references Keune K, van Loon A, Boon JJ. SEM backscattered-electron images of paint cross sections as information source for the presence of the lead white pigment and lead-related degradation and migration phenomena in oil paintings. Micros Microanal. 2011. doi: 10.1017/S1431927610094444 . es_ES
dc.relation.references Plater MJ, De Silva B, Gelbrich T, Hursthouse MB, Higgitt CL, Saunders DR. The characterization of lead fatty acid soaps in “protusions” in aged traditional oil paint”. Polyhedron. 2003;22:3171–9. es_ES
dc.relation.references Robinet L, Corbeil MC. The characterization of metal soaps. Stud Conserv. 2003;48:23–40. es_ES
dc.relation.references Mazzeo R, Prati S, Quaranta M, Joseph E, Kendix E, Galeotti M. Attenuated total reflection micro FTIR characterization of pigment-binder interaction in reconstructed paint films. Anal Bioanal Chem. 2008;392:65–76. es_ES
dc.relation.references Salvadó N, Butí S, Nicholson J, Emerich H, Labrador A, Pradell T. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR. Talanta. 2009;79:419–28. es_ES
dc.relation.references Genestar C, Pons C. Earth pigments in painting: characterization and differentiation by means FTIR spectroscopy. Anal Bioanal Chem. 2005;382:269–74. es_ES
dc.relation.references Scholz F, Meyer B. Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem. 1998;20:1–86. es_ES
dc.relation.references Scholz F, Schröder U, Gulabowski R, Doménech-Carbó A. Electrochemistry of Immobilized Particles and Droplets, 2nd edit. Berlin-Heidelberg: Springer; 2014. es_ES
dc.relation.references Doménech-Carbó A, Labuda J, Scholz F. Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem. 2013;85:609–31. es_ES
dc.relation.references Doménech-Carbó A, Doménech-Carbó MT, Costa V. Electrochemical methods for archaeometry, conservation and restoration (Monographs in Electrochemistry Series Scholz F Edit). Berlin-Heidelberg: Springer; 2009. es_ES
dc.relation.references Doménech-Carbó A. Electrochemistry for conservation science. J Solid State Electrochem. 2010;14:349–51. es_ES
dc.relation.references Ortiz-Miranda AS, Doménech-Carbó A, Doménech-Carbó MT, Osete-Cortina L, Bolívar-Galiano FF, Martín-Sánchez I, López-Miras MM. Electrochemical characterization of biodeterioration of paint films containing cadmium yellow pigment. J Solid State Electrochem. 2016;20:3287–302. es_ES
dc.relation.references Kühn H. Verdigris and copper resinate, in artists’ pigments. In: Roy A, editor. A handbook of their history and characteristics, vol. 2. Oxford: University Press; 1993. es_ES
dc.relation.references Bilardi CR. The red church or the art of Pennsylvania German Braucherei. Los Angeles: Pendraig Publications; 2009. es_ES
dc.relation.references Doménech-Carbó A, Doménech-Carbó MT, Moya-Moreno M, Gimeno-Adelantado JV, Bosch-Reig F. Identification of inorganic pigments from paintings and polychromed sculptures immobilized into polymer film electrodes by stripping differential pulse voltammetry. Anal Chim Acta. 2000;407:275–89. es_ES
dc.relation.references Ciferri O. Microbial degradation of paintings Appl. Environ Microbiol. 1999;65:879–85. es_ES
dc.relation.references Giacobini C, Firpi M. Problemi di microbiologia nei dipinti su tela Opificio delle Pietre Dure e Laboratorio di Restauro di Firenze. Atti del Convenzione sul Restauro delle Opere d’Arte. Florence: Edizioni Polistampa; 1981. p. 203–11. es_ES
dc.relation.references Giacobini C, De Cicco MA, Tiglie I, Accardo G. Actinomycetes and biodeterioration in the field of fine art. In: Houghton DR, Smith RN, Eggins HOW, editors. biodeterioration, vol. 7. New York: Elsevier; 1988. p. 418–23. es_ES
dc.relation.references Giacobini C, Pedica M, Spinucci M. 31 Problems and future projects on the study of biodeterioration: mural and canvas paintings. In: Proceedings of the 1st international conference on the biodeterioration of cultural property. New Delhi: Macmillan India; 1991. p. 275–286. es_ES
dc.relation.references Ross RT. Microbiology of paint films. Adv Appl Microbiol. 1963;5:217–34. es_ES
dc.relation.references Seves AM, Sora S, Ciferri O. The microbial colonization of oil paintings. A laboratory investigation. Int Biodeter Biodegr. 1996;37:215–24. es_ES
dc.relation.references Strelczyc A. Paintings and sculptures. In: Rose AH, editor. Microbialdeterioration. London: Academic; 1981. p. 203–34. es_ES
dc.relation.references Walsh JH. Ecological considerations of biodeterioration. Int. Biodeter. Biodegr. 2001;48:16–25. es_ES
dc.relation.references Zyska BJ. Problems of microbial deterioration of materials in Eastern Europe. Int Biodeter Biodegr. 2002;49:73–83. es_ES
dc.relation.references Khandekar N, Phenix A. Some observations on the effects of a selection of pigments on artificially aged egg tempera paint film. Los Angeles: Typescript, GCI Museum Research Laboratory; 1999. es_ES
dc.relation.references Ducce C, Bramanti E, Ghezzi L, Bernazzani L, Bonaduce I, Colombini MP, Sepi A, Biagi S, Tine MR. Interactions between inorganic pigments and proteinaceous binders in reference paint reconstructions. Dalton Trans. 2013;42:5945–84 (and references therein). es_ES
dc.relation.references Miyazawa T, Blout ER. The infrared spectra of polypeptides in various conformations: amide I and II bands. J Am Chem Soc. 1961;83:712–9. es_ES
dc.relation.references Nevskaya YN, Chirgadze NA. Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers. 1976;15:637–48. es_ES
dc.relation.references Qing H, Yanlin H, Fenlin S, Zuyi T. Effects of pH and metal ions on the conformation of bovine serum albumin in aqueous solution. An attenuated total reflection (ATR) FTIR spectroscopic study. Spectrochim Acta A. 1996;52:1795–800. es_ES
dc.relation.references Nara M, Morii H, Tanokura M. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochim Biophys Acta. 2013;1828:2319–27. es_ES
dc.relation.references Williams RJP. Copper-protein compounds in: the chemistry of the copper and zinc triads. Welch AJ, Chapman K, eds. Royal Society of Chemistry: Cambridge; 1993. es_ES
dc.relation.references Williams RJP, da Silva Frausto JJR. The natural selection of the chemical elements. Oxford: Oxford Univ. Press; 1996. es_ES
dc.relation.references Guthrie RE, Laurie SH. The binding of copper (II) to mohair keratin. Aust J Chem. 1968;21:2437–43. es_ES
dc.relation.references Marey L, Signolle JP, Amiel C, Travert J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc. 2001;26:151–9. es_ES
dc.relation.references Zotti M, Ferroni A, Calvini P. Mycological and FTIR analysis of biotic foxing on paper substrates. Int Biodeter Biodegr. 2011;65:569–78. es_ES
dc.relation.references Bombalska A, Mularczyk-Oliwa M, Kwásny M, Włodarski M, Kaliszewski M, Kopczynski K, Szpakowska M, Trafny EA. Classification of the biological material with use of FTIR spectroscopy and statistical analysis. Spectrochim Acta A. 2011;78:1221–6. es_ES
dc.relation.references Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA. Detection of the dipicolinic acid biomarker in Bacillus spores using curie-point pyrolysis mass spectrometry and fourier transform infrared spectroscopy. Anal Chem. 2000;72:119–27. es_ES
dc.relation.references Kong J, Yu S. Fourier Transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sinica. 2007;39:549–59. es_ES
dc.relation.references Byler DM, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986;25:469–87. es_ES
dc.relation.references Doménech-Carbó A, Doménech-Carbó MT, Valle-Algarra FM, Gimeno-Adelantado JV, Osete-Cortina L, Bosch-Reig F. On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database). Anal Chim Acta. 2016;927:1–12. es_ES
dc.relation.references Zakharchuk N, Meyer S, Lange B, Scholz F. A comparative study of lead oxide modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized lead oxides. Croat Chem Acta. 2000;73:667–704. es_ES
dc.relation.references Komorsky-Lovric S, Lovric M, Bond AM. Comparison of the square-wave stripping voltammetry of lead and mercury following their electrochemical or abrasive deposition onto a paraffin impregnated graphite electrode. Anal Chim Acta. 1992;258:299–305. es_ES
dc.relation.references Arjmand F, Adriaens A. Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. J Solid State Electrochem. 2012;16:535–43. es_ES
dc.relation.references Meyer B, Ziemer B, Scholz F. In situ X-ray diffraction study of the electrochemical reduction of tetragonal lead oxide and orthorhombic Pb(OH)Cl mechanically immobilized on a graphite electrode. J Electroanal Chem. 1995;392:79–83. es_ES
dc.relation.references Hasse U, Scholz F. In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochem Commun. 2001;3:429–34. es_ES
dc.relation.references Doménech-Carbó A, Doménech-Carbó MT, Mas-Barberá X. Identification of lead pigments in nanosamples from ancient paintings and polychromed sculptures using voltammetry of nanoparticles/atomic force microscopy. Talanta. 2007;71:1569–79. es_ES
dc.relation.references Doménech-Carbó A, Doménech-Carbó MT, Mas X, Ciarrocci J. Simultaneous identification of lead pigments and binding media in paint samples using voltammetry of microparticles. Arché. 2007;2:121–4. es_ES
dc.relation.references Jaworski A, Stojek Z, Scholz F. A comparison of simulated and experimental abrasive stripping voltammetric curves of ionic crystals: reversible case. J Electroanal Chem. 1993;354:1–9. es_ES
dc.relation.references Lovric M, Scholz F. A model for the propagation of a redox reaction thorough microcrystals. J Solid State Electrochem. 1997;1:108–13. es_ES
dc.relation.references Lovric M, Hermes M, Scholz F. The effect of the electrolyte concentration in the solution on the voltammetric response of insertion electrodes. J Solid State Electrochem. 1998;2:401–4. es_ES
dc.relation.references Oldham KB. Voltammetry at a three-phase junction. J Solid State Electrochem. 1998;2:367–77. es_ES
dc.relation.references Lovric M, Scholz F. A model for the coupled transport of ions and electrons in redox conductive microcrystals. J Solid State Electrochem. 1999;3:172–5. es_ES
dc.relation.references Schröder U, Oldham KB, Myland JC, Mahon PJ, Scholz F. Modelling of solid state voltammetry of immobilized microcrystals assuming an initiation of the electrochemical reaction at a three-phase junction. J Solid State Electrochem. 2000;4:314–24. es_ES
dc.relation.references Reregistration Eligibility Decision (RED) for Coppers. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Office of Pesticide Programs. Washington, DC: U.S. Government Printing Office; 2009. es_ES
dc.relation.references Mirkovic B, Tanovic B, Hrustic J, Mihajlovic M, Stevic M, Delibasic G, Vuksa P. Toxicity of copper hydroxide, dithianon, fluazinam, tebuconazole and pyraclostrobin to Didymella applanata isolates from Serbia. J Environ Sci Health B. 2015;50:175–83. es_ES
dc.relation.references Biswas FB, Roy TG, Rahman MA, Emran TB. An in vitro antibacterial and antifungal effects of cadmium(II) complexes of hexamethyltetraazacyclotetradecadiene and isomers of its saturated analogue. Asian Pac J Trop Med. 2014;7(S1):S534–9. es_ES
dc.relation.references Montazerozohori M, Zahedi S, Nasr-Esfahani M, Naghiha A. Some new cadmium complexes: antibacterial/antifungal activity and thermal behavior. J Ind Eng Chem. 2014;20:2463–70. es_ES
dc.relation.references Montazerozohori M, Musari SA, Masoudiasl A, Naghiga A, Dusek M, Kycerakova M. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: a supramolecular structure. Spectrochim Acta A. 2015;137:389–96. es_ES
dc.relation.references Novakova K, Navratil T, Sestakova I, Lee MP, Vodickova H, Zamecnikova B, Sokolova R, Bulickova J, Gal M. Characterization of cadmium ion transport across model and real biomembranes and indication of induced damage of plant tissues. Monatsch Chem Chem Mont. 2015;146:819–29. es_ES
dc.relation.references Negm NA, Said MM, Morsey SM. Pyrazole derived cationic surfactants and their tin and copper complexes: synthesis activity, antibacterial and antifungal efficacy. J Surfact Deterg. 2010;13:521–8. es_ES


This item appears in the following Collection(s)

Show simple item record