Cruz–Uribe D., Fiorenza A., Martell J. M., Pérez C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)
Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer–Verlag, Berlin–Heidelberg, 2011.
[+]
Cruz–Uribe D., Fiorenza A., Martell J. M., Pérez C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)
Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)
L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer–Verlag, Berlin–Heidelberg, 2011.
Fefferman C.: The multiplier problem for the ball. Ann. of Math. (2) 94, 330–336 (1971)
J. García–Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North–Holland Mathematical Studies 116, Amsterdam, 1985.
V. Hermanns, Zur Existenz von Rechtsinversen Linearer Partieller Differentialoperatoren mit Konstanten Koeffizienten auf $${{\mathcal{B}_{p,k}^{loc}}}$$ –Räumen. Dissertation, Wuppertal, 2005.
Hoffmann M.: The Banach envelope of Paley–Wiener type spaces. Proc. Amer. Math. Soc. 131, 543–548 (2002)
L. Hormander, The Analysis of Linear Partial Operators II. Grundlehren 257, Springer–Verlag, Berlin–Heidelberg, 1983.
Jarchow H.: Locally Convex Spaces. Teubner–Verlag, Stuttgart (1981)
Köthe G.: Topological Vector Spaces I. Springer–Verlag, Berlin–Heidelberg (1969)
Kováčik O., Rákosník J.: On spaces L p(x) and W p(x). Czechoslovak Math. J. 41((116), 592–618 (1991)
Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Springer–Verlag, Berlin–Heidelberg (1977)
O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel–Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl. 6 (2000), 503–531.
Mitiagin B. S.: On idempotent multipliers in symmetric functional spaces. Funkcional Anal. i Prilozen 6, 81–82 (1972)
Motos J., Planells M. J., Talavera C. F.: On some iterated weighted spaces. J. Math. Anal. Appl. 338, 162–174 (2008)
Motos J., Planells M. J.: On sequence space representations of Hörmander–Beurling spaces. J. Math. Anal. Appl. 348, 395–403 (2008)
Motos J., Planells M. J., Villegas J.: Some embedding theorems for Hörmander–Beurling spaces. J. Math. Anal. Appl. 364, 473–482 (2010)
Motos J., Planells M. J., Talavera C. F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388, 775–787 (2012)
Nikol’skij S. M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer–Verlag, Berlin–Heidelberg (1975)
Schmeisser H.J., Triebel H.: Topics in Fourier Analysis and Function Spaces. John Wiley & Sons, Chichester (1987)
Schwartz L.: Théorie des Distributions. Hermann, Paris (1966)
Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North–Holland, Amsterdam (1978)
Triebel H.: Theory of Function Spaces. Birkhäuser, Basel (1983)
D. Vogt, Sequence space representations of spaces of test functions and distributions. In: “Functional Analysis, Holomorphy and Approximation Theory" (G. I. Zapata Ed.), Lect. Notes Pure Appl. Math. 83 (1983), 405–443.
[-]