- -

A Note on Variable Exponent Hörmander Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Note on Variable Exponent Hörmander Spaces

Mostrar el registro completo del ítem

Motos Izquierdo, J.; Planells Gilabert, MJ.; Talavera Usano, CF. (2013). A Note on Variable Exponent Hörmander Spaces. Mediterranean Journal of Mathematics. 10(3):1419-1434. https://doi.org/10.1007/s00009-013-0268-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/108051

Ficheros en el ítem

Metadatos del ítem

Título: A Note on Variable Exponent Hörmander Spaces
Autor: Motos Izquierdo, Joaquín Planells Gilabert, María Jesús Talavera Usano, César Félix
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper we introduce the variable exponent Hormander spaces and we study some of their properties. In particular, it is shown that is isomorphic to (Omega open set in and the Hardy-Littlewood maximal operator M ...[+]
Palabras clave: Variable exponent Lebesgue space , Entire analytic function , Hardy-Littlewood maximal operator , Hörmander space.
Derechos de uso: Reserva de todos los derechos
Fuente:
Mediterranean Journal of Mathematics. (issn: 1660-5446 )
DOI: 10.1007/s00009-013-0268-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00009-013-0268-y
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2008-04594/ES/ANALISIS DE FOURIER CLASICO, MULTILINEAL Y VECTORIAL/
info:eu-repo/grantAgreement/MICINN//MTM2011-23164/ES/ANALISIS DE FOURIER MULTILINEAL, VECTORIAL Y SUS APLICACIONES/
Agradecimientos:
Partially supported by grants MTM2008-04594 and MTM2011-23164 from the Spanish Ministry of Science and Innovation.
Tipo: Artículo

References

Cruz–Uribe D., Fiorenza A., Martell J. M., Pérez C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer–Verlag, Berlin–Heidelberg, 2011. [+]
Cruz–Uribe D., Fiorenza A., Martell J. M., Pérez C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer–Verlag, Berlin–Heidelberg, 2011.

Fefferman C.: The multiplier problem for the ball. Ann. of Math. (2) 94, 330–336 (1971)

J. García–Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North–Holland Mathematical Studies 116, Amsterdam, 1985.

V. Hermanns, Zur Existenz von Rechtsinversen Linearer Partieller Differentialoperatoren mit Konstanten Koeffizienten auf $${{\mathcal{B}_{p,k}^{loc}}}$$ –Räumen. Dissertation, Wuppertal, 2005.

Hoffmann M.: The Banach envelope of Paley–Wiener type spaces. Proc. Amer. Math. Soc. 131, 543–548 (2002)

L. Hormander, The Analysis of Linear Partial Operators II. Grundlehren 257, Springer–Verlag, Berlin–Heidelberg, 1983.

Jarchow H.: Locally Convex Spaces. Teubner–Verlag, Stuttgart (1981)

Köthe G.: Topological Vector Spaces I. Springer–Verlag, Berlin–Heidelberg (1969)

Kováčik O., Rákosník J.: On spaces L p(x) and W p(x). Czechoslovak Math. J. 41((116), 592–618 (1991)

Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Springer–Verlag, Berlin–Heidelberg (1977)

O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel–Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl. 6 (2000), 503–531.

Mitiagin B. S.: On idempotent multipliers in symmetric functional spaces. Funkcional Anal. i Prilozen 6, 81–82 (1972)

Motos J., Planells M. J., Talavera C. F.: On some iterated weighted spaces. J. Math. Anal. Appl. 338, 162–174 (2008)

Motos J., Planells M. J.: On sequence space representations of Hörmander–Beurling spaces. J. Math. Anal. Appl. 348, 395–403 (2008)

Motos J., Planells M. J., Villegas J.: Some embedding theorems for Hörmander–Beurling spaces. J. Math. Anal. Appl. 364, 473–482 (2010)

Motos J., Planells M. J., Talavera C. F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388, 775–787 (2012)

Nikol’skij S. M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer–Verlag, Berlin–Heidelberg (1975)

Schmeisser H.J., Triebel H.: Topics in Fourier Analysis and Function Spaces. John Wiley & Sons, Chichester (1987)

Schwartz L.: Théorie des Distributions. Hermann, Paris (1966)

Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North–Holland, Amsterdam (1978)

Triebel H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

D. Vogt, Sequence space representations of spaces of test functions and distributions. In: “Functional Analysis, Holomorphy and Approximation Theory" (G. I. Zapata Ed.), Lect. Notes Pure Appl. Math. 83 (1983), 405–443.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem