- -

A Note on Variable Exponent Hörmander Spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Note on Variable Exponent Hörmander Spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Motos Izquierdo, Joaquín es_ES
dc.contributor.author Planells Gilabert, María Jesús es_ES
dc.contributor.author Talavera Usano, César Félix es_ES
dc.date.accessioned 2018-09-25T07:07:32Z
dc.date.available 2018-09-25T07:07:32Z
dc.date.issued 2013 es_ES
dc.identifier.issn 1660-5446 es_ES
dc.identifier.uri http://hdl.handle.net/10251/108051
dc.description.abstract [EN] In this paper we introduce the variable exponent Hormander spaces and we study some of their properties. In particular, it is shown that is isomorphic to (Omega open set in and the Hardy-Littlewood maximal operator M is bounded in extending a Hormander's result to our context. As a consequence, a number of results on sequence space representations of variable exponent Hormander spaces are given. es_ES
dc.description.sponsorship Partially supported by grants MTM2008-04594 and MTM2011-23164 from the Spanish Ministry of Science and Innovation. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Variable exponent Lebesgue space es_ES
dc.subject Entire analytic function es_ES
dc.subject Hardy-Littlewood maximal operator es_ES
dc.subject Hörmander space. es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A Note on Variable Exponent Hörmander Spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00009-013-0268-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2008-04594/ES/ANALISIS DE FOURIER CLASICO, MULTILINEAL Y VECTORIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-23164/ES/ANALISIS DE FOURIER MULTILINEAL, VECTORIAL Y SUS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Motos Izquierdo, J.; Planells Gilabert, MJ.; Talavera Usano, CF. (2013). A Note on Variable Exponent Hörmander Spaces. Mediterranean Journal of Mathematics. 10(3):1419-1434. https://doi.org/10.1007/s00009-013-0268-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00009-013-0268-y es_ES
dc.description.upvformatpinicio 1419 es_ES
dc.description.upvformatpfin 1434 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\254897 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Cruz–Uribe D., Fiorenza A., Martell J. M., Pérez C.: The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006) es_ES
dc.description.references Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005) es_ES
dc.description.references L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. 2017, Springer–Verlag, Berlin–Heidelberg, 2011. es_ES
dc.description.references Fefferman C.: The multiplier problem for the ball. Ann. of Math. (2) 94, 330–336 (1971) es_ES
dc.description.references J. García–Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North–Holland Mathematical Studies 116, Amsterdam, 1985. es_ES
dc.description.references V. Hermanns, Zur Existenz von Rechtsinversen Linearer Partieller Differentialoperatoren mit Konstanten Koeffizienten auf $${{\mathcal{B}_{p,k}^{loc}}}$$ –Räumen. Dissertation, Wuppertal, 2005. es_ES
dc.description.references Hoffmann M.: The Banach envelope of Paley–Wiener type spaces. Proc. Amer. Math. Soc. 131, 543–548 (2002) es_ES
dc.description.references L. Hormander, The Analysis of Linear Partial Operators II. Grundlehren 257, Springer–Verlag, Berlin–Heidelberg, 1983. es_ES
dc.description.references Jarchow H.: Locally Convex Spaces. Teubner–Verlag, Stuttgart (1981) es_ES
dc.description.references Köthe G.: Topological Vector Spaces I. Springer–Verlag, Berlin–Heidelberg (1969) es_ES
dc.description.references Kováčik O., Rákosník J.: On spaces L p(x) and W p(x). Czechoslovak Math. J. 41((116), 592–618 (1991) es_ES
dc.description.references Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Springer–Verlag, Berlin–Heidelberg (1977) es_ES
dc.description.references O. Mendez and M. Mitrea, The Banach envelopes of Besov and Triebel–Lizorkin spaces and applications to partial differential equations. J. Fourier Anal. Appl. 6 (2000), 503–531. es_ES
dc.description.references Mitiagin B. S.: On idempotent multipliers in symmetric functional spaces. Funkcional Anal. i Prilozen 6, 81–82 (1972) es_ES
dc.description.references Motos J., Planells M. J., Talavera C. F.: On some iterated weighted spaces. J. Math. Anal. Appl. 338, 162–174 (2008) es_ES
dc.description.references Motos J., Planells M. J.: On sequence space representations of Hörmander–Beurling spaces. J. Math. Anal. Appl. 348, 395–403 (2008) es_ES
dc.description.references Motos J., Planells M. J., Villegas J.: Some embedding theorems for Hörmander–Beurling spaces. J. Math. Anal. Appl. 364, 473–482 (2010) es_ES
dc.description.references Motos J., Planells M. J., Talavera C. F.: On variable exponent Lebesgue spaces of entire analytic functions. J. Math. Anal. Appl. 388, 775–787 (2012) es_ES
dc.description.references Nikol’skij S. M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer–Verlag, Berlin–Heidelberg (1975) es_ES
dc.description.references Schmeisser H.J., Triebel H.: Topics in Fourier Analysis and Function Spaces. John Wiley & Sons, Chichester (1987) es_ES
dc.description.references Schwartz L.: Théorie des Distributions. Hermann, Paris (1966) es_ES
dc.description.references Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North–Holland, Amsterdam (1978) es_ES
dc.description.references Triebel H.: Theory of Function Spaces. Birkhäuser, Basel (1983) es_ES
dc.description.references D. Vogt, Sequence space representations of spaces of test functions and distributions. In: “Functional Analysis, Holomorphy and Approximation Theory" (G. I. Zapata Ed.), Lect. Notes Pure Appl. Math. 83 (1983), 405–443. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem