- -

Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2)

Mostrar el registro completo del ítem

Navarrete Algaba, L.; Balaguer Ramírez, M.; Vert Belenguer, VB.; Serra Alfaro, JM. (2017). Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2). Fuel Cells. 17(1):100-107. https://doi.org/10.1002/fuce.201600133

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/108054

Ficheros en el ítem

Metadatos del ítem

Título: Tailoring Electrocatalytic Properties of Solid Oxide Fuel Cell Composite Cathodes Based on (La0.8Sr0.2)(0.95)MnO3+delta and Doped Cerias Ce(1 x)Ln(x)O(2 delta) (Ln=Gd, La, Er, Pr, Tb and x=0.1 0.2)
Autor: Navarrete Algaba, Laura Balaguer Ramírez, María Vert Belenguer, Vicente Bernardo Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Composites made of different doped cerias and (La0.8Sr0.2)(0.95)MnO3+ were studied as potential solid oxide fuel cell cathodes. Tb, Pr, Gd and Er have been introduced as ceria dopants to enhance the electrocatalytic ...[+]
Palabras clave: Cathode , Composite , Doped Cerias , LSM , Praseodymium , SOFC
Derechos de uso: Reserva de todos los derechos
Fuente:
Fuel Cells. (issn: 1615-6846 )
DOI: 10.1002/fuce.201600133
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/fuce.201600133
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2014-57651-R/ES/ALMACENAMIENTO DE ENERGIA VIA REDUCCION DE CO2 A COMBUSTIBLES Y PRODUCTOS QUIMICOS/
Agradecimientos:
Funding from Spanish Government (MINECO ENE2014-57651 grant) is kindly acknowledged.
Tipo: Artículo

References

Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x

Mizusaki, J. (2000). Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1â xSrxMnO3. Solid State Ionics, 132(3-4), 167-180. doi:10.1016/s0167-2738(00)00662-7

Jiang, S. P. (2003). Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 124(2), 390-402. doi:10.1016/s0378-7753(03)00814-0 [+]
Minh, N. Q. (1993). Ceramic Fuel Cells. Journal of the American Ceramic Society, 76(3), 563-588. doi:10.1111/j.1151-2916.1993.tb03645.x

Mizusaki, J. (2000). Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1â xSrxMnO3. Solid State Ionics, 132(3-4), 167-180. doi:10.1016/s0167-2738(00)00662-7

Jiang, S. P. (2003). Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 124(2), 390-402. doi:10.1016/s0378-7753(03)00814-0

YOKOKAWA, H. (1990). Thermodynamic analysis on interface between perovskite electrode and YSZ electrolyte. Solid State Ionics, 40-41, 398-401. doi:10.1016/0167-2738(90)90366-y

Berenov, A., Wood, H., & Atkinson, A. (2007). Evaluation of La0.8Sr0.2Cu1-xMnxOd Double Perovskite for Use in SOFCs. ECS Transactions. doi:10.1149/1.2729216

Yun, K. S., Yoo, C.-Y., Yoon, S.-G., Yu, J. H., & Joo, J. H. (2015). Chemically and thermo-mechanically stable LSM–YSZ segmented oxygen permeable ceramic membrane. Journal of Membrane Science, 486, 222-228. doi:10.1016/j.memsci.2015.03.049

Jiang, S. P. (2008). Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 43(21), 6799-6833. doi:10.1007/s10853-008-2966-6

Balaguer, M., Vert, V. B., Navarrete, L., & Serra, J. M. (2013). SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, X = Gd, Cr, Mg, Bi, Ce). Journal of Power Sources, 223, 214-220. doi:10.1016/j.jpowsour.2012.09.060

Jiang, S. P., & Yan, Y. (Eds.). (2013). Materials for High-Temperature Fuel Cells. doi:10.1002/9783527644261

Perry Murray, E. (2001). (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells. Solid State Ionics, 143(3-4), 265-273. doi:10.1016/s0167-2738(01)00871-2

Jiang, S. P., Leng, Y. J., Chan, S. H., & Khor, K. A. (2003). Development of (La,Sr)MnO[sub 3]-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 6(4), A67. doi:10.1149/1.1558351

Jiang, S. P., & Wang, W. (2005). Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells. Solid State Ionics, 176(15-16), 1351-1357. doi:10.1016/j.ssi.2005.03.011

Navarrete, L., Solís, C., & Serra, J. M. (2015). Boosting the oxygen reduction reaction mechanisms in IT-SOFC cathodes by catalytic functionalization. Journal of Materials Chemistry A, 3(32), 16440-16444. doi:10.1039/c5ta05187h

Murray, E. P., Tsai, T., & Barnett, S. A. (1998). Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ionics, 110(3-4), 235-243. doi:10.1016/s0167-2738(98)00142-8

Jørgensen, M. (2001). Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics, 139(1-2), 1-11. doi:10.1016/s0167-2738(00)00818-3

Balaguer, M., Solís, C., & Serra, J. M. (2012). Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition. The Journal of Physical Chemistry C, 116(14), 7975-7982. doi:10.1021/jp211594d

Inaba, H. (1996). Ceria-based solid electrolytes. Solid State Ionics, 83(1-2), 1-16. doi:10.1016/0167-2738(95)00229-4

Mogensen, M. (2000). Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 129(1-4), 63-94. doi:10.1016/s0167-2738(99)00318-5

M. Balaguer 2013

Goodenough, J. B. (2003). Oxide-Ion Electrolytes. Annual Review of Materials Research, 33(1), 91-128. doi:10.1146/annurev.matsci.33.022802.091651

Kuharuangrong, S. (2007). Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. Journal of Power Sources, 171(2), 506-510. doi:10.1016/j.jpowsour.2007.05.104

Tuller, H. L., Bishop, S. R., Chen, D., Kuru, Y., Kim, J.-J., & Stefanik, T. S. (2012). Praseodymium doped ceria: Model mixed ionic electronic conductor with coupled electrical, optical, mechanical and chemical properties. Solid State Ionics, 225, 194-197. doi:10.1016/j.ssi.2012.02.029

Balaguer, M., Yoo, C.-Y., Bouwmeester, H. J. M., & Serra, J. M. (2013). Bulk transport and oxygen surface exchange of the mixed ionic–electronic conductor Ce1−xTbxO2−δ (x = 0.1, 0.2, 0.5). Journal of Materials Chemistry A, 1(35), 10234. doi:10.1039/c3ta11610g

Vert, V. B., Solís, C., & Serra, J. M. (2010). Electrochemical Properties of PSFC-BCYb Composites as Cathodes for Proton Conducting Solid Oxide Fuel Cells. Fuel Cells, 11(1), 81-90. doi:10.1002/fuce.201000090

Steele, B. (2000). Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics, 129(1-4), 95-110. doi:10.1016/s0167-2738(99)00319-7

Jørgensen, M. J., & Mogensen, M. (2001). Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes. Journal of The Electrochemical Society, 148(5), A433. doi:10.1149/1.1360203

Balaguer, M., Solís, C., & Serra, J. M. (2011). Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ+ Co (x= 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane. Chemistry of Materials, 23(9), 2333-2343. doi:10.1021/cm103581w

Tikhonovich, V. (1998). Surface modification of La(Sr)MnO3 electrodes. Solid State Ionics, 106(3-4), 197-206. doi:10.1016/s0167-2738(97)00505-5

C.-Y. Yoo 2012

Kim, J. (2001). Characterization of LSMâ YSZ composite electrode by ac impedance spectroscopy. Solid State Ionics, 143(3-4), 379-389. doi:10.1016/s0167-2738(01)00877-3

Wang, S. (1998). Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes. Solid State Ionics, 113-115(1-2), 291-303. doi:10.1016/s0167-2738(98)00379-8

Sunde, S. (1996). Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 143(6), 1930. doi:10.1149/1.1836927

Sunde, S. (1997). Calculations of impedance of composite anodes for solid oxide fuel cells. Electrochimica Acta, 42(17), 2637-2648. doi:10.1016/s0013-4686(96)00455-0

Serra, J. M., Vert, V. B., Büchler, O., Meulenberg, W. A., & Buchkremer, H. P. (2008). IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites. Chemistry of Materials, 20(12), 3867-3875. doi:10.1021/cm702508f

Serra, J. M., & Vert, V. B. (2009). Optimization of Oxygen Activation Fuel-Cell Electrocatalysts by Combinatorial Designs. ChemSusChem, 2(10), 957-961. doi:10.1002/cssc.200900149

Leng, Y. (2004). Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. International Journal of Hydrogen Energy, 29(10), 1025-1033. doi:10.1016/j.ijhydene.2004.01.009

Tsai, T. (1997). Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics, 93(3-4), 207-217. doi:10.1016/s0167-2738(96)00524-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem