- -

Sweet and nonsweet taste discrimination of nectarines using visible and near-infrared spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sweet and nonsweet taste discrimination of nectarines using visible and near-infrared spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortes-Lopez, Victoria es_ES
dc.contributor.author Cubero, Sergio es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.date.accessioned 2018-09-25T07:13:24Z
dc.date.available 2018-09-25T07:13:24Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0925-5214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/108065
dc.description.abstract [EN] The feasibility of using visible and near-infrared spectroscopy technology combined with multivariate analysis to discriminate cv. 'Big Top' and cv. 'Diamond Ray' nectarines has been studied. These varieties are very difficult to differentiate visually on the production line but show important differences in taste that affects the acceptance by final consumers. The relationship between the diffuse reflectance spectra and the two nectarine varieties was established. Five hundred nectarine samples (250 of each variety) were used for the study. Tests were performed by using a spectrometer capable of measuring in two different spectral ranges (600-1100 nm and 900-1700 nm). These spectral ranges were used to develop two accurate classification models based on linear discriminate analysis (LDA) and partial least squares discriminate analysis (PLS-DA). Later, selection techniques were applied to select the most effective wavelengths. The results showed that the PLS-DA model achieved better accuracy and less latent variables than LDA model, and specifically, good results with 100% classification accuracy were obtained using only the 600-1100 nm spectral range for the two models and eight selected wavelengths. These results places visible and near-infrared spectrocopy as an accurate classification tool for nectarine varieties with a very similar appearance but different tastes that could be potentially used in an automated inspection system. es_ES
dc.description.sponsorship This work was partially funded by the Generalitat Valenciana through the project AICO/2015/122 and by the INIA and FEDER funds through projects RTA2012-00062-C04-03 and RTA2015-00078-00-00. Victoria Cortes Lopez thanks the Spanish Ministry of Education, Culture and Sports for the FPU grant (FPU13/04202). The authors wish to thank the cooperative 'Fruits de Ponent' for providing the fruit. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Postharvest Biology and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nectarine es_ES
dc.subject Sweet taste es_ES
dc.subject Nonsweet taste es_ES
dc.subject Visible and near-infraed spectroscopy es_ES
dc.subject Discrimination es_ES
dc.subject Chemometrics es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Sweet and nonsweet taste discrimination of nectarines using visible and near-infrared spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.postharvbio.2017.07.015 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GV//AICO/2015/122/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00078-00-00/ES/Sistemas no destructivos para la determinación automática de la calidad interna de frutas en línea utilizando métodos ópticos e información espectral/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F122/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INIA//RTA2015-00078-00-00/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F04202/ES/FPU13%2F04202/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.description.bibliographicCitation Cortes-Lopez, V.; Cubero, S.; Aleixos Borrás, MN.; Blasco Ivars, J.; Talens Oliag, P. (2017). Sweet and nonsweet taste discrimination of nectarines using visible and near-infrared spectroscopy. Postharvest Biology and Technology. 133:113-120. https://doi.org/10.1016/j.postharvbio.2017.07.015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.postharvbio.2017.07.015 es_ES
dc.description.upvformatpinicio 113 es_ES
dc.description.upvformatpfin 120 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 133 es_ES
dc.relation.pasarela S\342376 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem