- -

Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites

Show full item record

Ivashchenko, S.; Escobar Ivirico, JL.; García Cruz, DM.; Campillo Fernández, AJ.; Gallego Ferrer, G.; Monleón Pradas, M. (2015). Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites. Journal of Biomaterials Applications. 29(8):1096-1108. doi:10.1177/0885328214554816

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/108615

Files in this item

Item Metadata

Title: Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Issued date:
Abstract:
[EN] A series of novel poly(CLMA-co-HEA)/silica nanocomposites is synthesized from caprolactone 2-(methacryloyloxy)ethyl ester (CLMA) and 2-hydroxyethyl acrylate (HEA) as organic comonomers and the simultaneous sol-gel ...[+]
Subjects: Nanocomposites , Organic polymer , Silica , Bioactivity , Biocompatibility
Copyrigths: Reserva de todos los derechos
Source:
Journal of Biomaterials Applications. (issn: 0885-3282 )
DOI: 10.1177/0885328214554816
Publisher:
SAGE Publications
Publisher version: https://doi.org/10.1177/0885328214554816
Thanks:
The authors acknowledge the financial support from the Spanish Ministry of Science and Innovation through projects DPI2010-20399-c04-03 and MAT2011-28791-C03-02. AJCF acknowledges support through Torres Quevedo grant ...[+]
Type: Artículo

References

Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792

Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400

Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399 [+]
Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792

Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400

Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399

Boxberg, Y., Schnabelrauch, M., Vogt, S., Sánchez, M. S., Ferrer, G. G., Pradas, M. M., & Antón, J. S. (2006). Effect of hydrophilicity on the properties of a degradable polylactide. Journal of Polymer Science Part B: Polymer Physics, 44(4), 656-664. doi:10.1002/polb.20723

Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular Bioscience, 4(8), 743-765. doi:10.1002/mabi.200400026

Sprio, S., Ruffini, A., Valentini, F., D’Alessandro, T., Sandri, M., Panseri, S., & Tampieri, A. (2011). Biomimesis and biomorphic transformations: New concepts applied to bone regeneration. Journal of Biotechnology, 156(4), 347-355. doi:10.1016/j.jbiotec.2011.07.034

Barone, D. T.-J., Raquez, J.-M., & Dubois, P. (2011). Bone-guided regeneration: from inert biomaterials to bioactive polymer (nano)composites. Polymers for Advanced Technologies, 22(5), 463-475. doi:10.1002/pat.1845

Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003

Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001

Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 6(8), 2874-2888. doi:10.1016/j.actbio.2010.02.012

Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002

Hanemann, T., & Szabó, D. V. (2010). Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials, 3(6), 3468-3517. doi:10.3390/ma3063468

Pantaleón, R., & González-Benito, J. (2010). Structure and thermostability of PMMA in PMMA/silica nanocomposites: Effect of high-energy ball milling and the amount of the nanofiller. Polymer Composites, 31(9), 1585-1592. doi:10.1002/pc.20946

Bera, O., Pilić, B., Pavličević, J., Jovičić, M., Holló, B., Szécsényi, K. M., & Špirkova, M. (2011). Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochimica Acta, 515(1-2), 1-5. doi:10.1016/j.tca.2010.12.006

Yan, S., Yin, J., Cui, L., Yang, Y., & Chen, X. (2011). Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids and Surfaces B: Biointerfaces, 86(1), 218-224. doi:10.1016/j.colsurfb.2011.04.004

Zhang, Z.-G., Li, Z.-H., Mao, X.-Z., & Wang, W.-C. (2011). Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology, 63(5), 437-443. doi:10.1007/s10616-011-9367-4

Salinas, A. J., Esbrit, P., & Vallet-Regí, M. (2013). A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci., 1(1), 40-51. doi:10.1039/c2bm00071g

Izquierdo-Barba, I., Salinas, A. J., & Vallet-Regí, M. (2013). Bioactive Glasses: From Macro to Nano. International Journal of Applied Glass Science, 4(2), 149-161. doi:10.1111/ijag.12028

Hajji, P., David, L., Gerard, J. F., Pascault, J. P., & Vigier, G. (1999). Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. Journal of Polymer Science Part B: Polymer Physics, 37(22), 3172-3187. doi:10.1002/(sici)1099-0488(19991115)37:22<3172::aid-polb2>3.0.co;2-r

Catauro, M., Raucci, M. G., De Gaetano, F., & Marotta, A. (2003). Journal of Materials Science, 38(14), 3097-3102. doi:10.1023/a:1024773113001

Catauro, M., Raucci, M. G., de Gaetano, F., Buri, A., Marotta, A., & Ambrosio, L. (2004). Sol–gel synthesis, structure and bioactivity of Polycaprolactone/CaO • SiO2hybrid material. Journal of Materials Science: Materials in Medicine, 15(9), 991-995. doi:10.1023/b:jmsm.0000042684.13247.38

Nie, K., Pang, W., Wang, Y., Lu, F., & Zhu, Q. (2005). Effects of specific bonding interactions in poly(ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Materials Letters, 59(11), 1325-1328. doi:10.1016/j.matlet.2004.12.034

Zou, H., Wu, S., & Shen, J. (2008). Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chemical Reviews, 108(9), 3893-3957. doi:10.1021/cr068035q

Poologasundarampillai, G., Ionescu, C., Tsigkou, O., Murugesan, M., Hill, R. G., Stevens, M. M., … Jones, J. R. (2010). Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 20(40), 8952. doi:10.1039/c0jm00930j

Lee, E.-J., Teng, S.-H., Jang, T.-S., Wang, P., Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2010). Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomaterialia, 6(9), 3557-3565. doi:10.1016/j.actbio.2010.03.022

Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022

Kawai, T., Ohtsuki, C., Kamitakahara, M., Hosoya, K., Tanihara, M., Miyazaki, T., … Konagaya, S. (2007). In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups. Journal of Materials Science: Materials in Medicine, 18(6), 1037-1042. doi:10.1007/s10856-006-0081-2

Oliveira, A. (2003). Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 24(15), 2575-2584. doi:10.1016/s0142-9612(03)00060-7

Rhee, S. H. (2003). Effect of Silica Content on the Bioactivity and Mechanical Properties of Poly(ε-Caprolactone)/Silica Hybrid containing Calcium Salt. Key Engineering Materials, 240-242, 187-190. doi:10.4028/www.scientific.net/kem.240-242.187

Kokubo, T. (2005). Design of bioactive bone substitutes based on biomineralization process. Materials Science and Engineering: C, 25(2), 97-104. doi:10.1016/j.msec.2005.01.002

Rimer, J. D., Trofymluk, O., Navrotsky, A., Lobo, R. F., & Vlachos, D. G. (2007). Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials, 19(17), 4189-4197. doi:10.1021/cm070708d

Hernández, J. C. R., Pradas, M. M., & Ribelles, J. L. G. (2008). Properties of poly(2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process. Journal of Non-Crystalline Solids, 354(17), 1900-1908. doi:10.1016/j.jnoncrysol.2007.10.016

Vallés-Lluch, A., Costa, E., Gallego Ferrer, G., Monleón Pradas, M., & Salmerón-Sánchez, M. (2010). Structure and biological response of polymer/silica nanocomposites prepared by sol–gel technique. Composites Science and Technology, 70(13), 1789-1795. doi:10.1016/j.compscitech.2010.07.008

Vallés-Lluch, A., Rodríguez-Hernández, J. C., Ferrer, G. G., & Pradas, M. M. (2010). Synthesis and characterization of poly(EMA-co-HEA)/SiO2 nanohybrids. European Polymer Journal, 46(7), 1446-1455. doi:10.1016/j.eurpolymj.2010.04.010

Vallés-Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2010). Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P(EMA-co-HEA). European Polymer Journal, 46(5), 910-917. doi:10.1016/j.eurpolymj.2010.02.004

Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017

Brinker, C. ., Keefer, K. ., Schaefer, D. ., & Ashley, C. . (1982). Sol-gel transition in simple silicates. Journal of Non-Crystalline Solids, 48(1), 47-64. doi:10.1016/0022-3093(82)90245-9

Anselme, K., Ponche, A., & Bigerelle, M. (2010). Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1487-1507. doi:10.1243/09544119jeim901

Palacio, M. L. B., & Bhushan, B. (2012). Bioadhesion: a review of concepts and applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1967), 2321-2347. doi:10.1098/rsta.2011.0483

Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102

Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology-Cell Physiology, 290(6), C1640-C1650. doi:10.1152/ajpcell.00455.2005

[-]

This item appears in the following Collection(s)

Show full item record