Mostrar el registro sencillo del ítem
dc.contributor.author | Ivashchenko, Sergiy![]() |
es_ES |
dc.contributor.author | Escobar Ivirico, Jorge Luis![]() |
es_ES |
dc.contributor.author | García Cruz, Dunia Mercedes![]() |
es_ES |
dc.contributor.author | Campillo Fernández, Alberto José![]() |
es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria![]() |
es_ES |
dc.contributor.author | Monleón Pradas, Manuel![]() |
es_ES |
dc.date.accessioned | 2018-09-29T04:32:12Z | |
dc.date.available | 2018-09-29T04:32:12Z | |
dc.date.issued | 2015 | es_ES |
dc.identifier.issn | 0885-3282 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/108615 | |
dc.description.abstract | [EN] A series of novel poly(CLMA-co-HEA)/silica nanocomposites is synthesized from caprolactone 2-(methacryloyloxy)ethyl ester (CLMA) and 2-hydroxyethyl acrylate (HEA) as organic comonomers and the simultaneous sol-gel polymerization of tetraethyloxysilane (TEOS) as silica precursor, in different mass ratios up to a 30 wt% of silica. The nanocomposites are characterized as to their mechanical and thermal properties, water sorption, bioactivity and biocompatibility, reflecting the effect on the organic matrix provided by the silica network formation. The nanocomposites nucleate the growth of hydroxyapatite (HAp) on their surfaces when immersed in the simulated body fluid of the composition used in this work. Proliferation of the MC3T3 osteoblast-like cells on the materials was assessed with the MTS assay showing their biocompatibility. Immunocytochemistry reveals osteocalcin and type I collagen production, indicating that osteoblast differentiation was promoted by the materials, and calcium deposition was confirmed by von Kossa staining. The results indicate that these poly(CLMA-co-HEA)/silica nanocomposites could be a promising biomaterial for bone tissue engineering. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support from the Spanish Ministry of Science and Innovation through projects DPI2010-20399-c04-03 and MAT2011-28791-C03-02. AJCF acknowledges support through Torres Quevedo grant PTQ08-02-06321. GGF and MMP acknowledge support of CIBER-BBN initiative, financed by Instituto de Salud Carlos III (Spain) with the assistance of the European Regional Development Fund. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Journal of Biomaterials Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Organic polymer | es_ES |
dc.subject | Silica | es_ES |
dc.subject | Bioactivity | es_ES |
dc.subject | Biocompatibility | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0885328214554816 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-28791-C03-02/ES/MATERIALES DE SOPORTE Y LIBERACION CONTROLADA PARA LA REGENERACION DE ESTRUCTURAS NEURALES AFECTADAS POR ICTUS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-03/ES/DISEÑO Y FABRICACION DE UNA PLATAFORMA BIOMIMETICA TIPO SCAFFOLD%2FSOPORTE PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PTQ-08-02-06321/ES/PTQ-08-02-06321/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Ivashchenko, S.; Escobar Ivirico, JL.; García Cruz, DM.; Campillo Fernández, AJ.; Gallego-Ferrer, G.; Monleón Pradas, M. (2015). Bioactive organic inorganic poly(CLMA-co-HEA)/silica nanocomposites. Journal of Biomaterials Applications. 29(8):1096-1108. https://doi.org/10.1177/0885328214554816 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1177/0885328214554816 | es_ES |
dc.description.upvformatpinicio | 1096 | es_ES |
dc.description.upvformatpfin | 1108 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\277441 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | Ivirico, J. L. E., Martínez, E. C., Sánchez, M. S., Criado, I. M., Ribelles, J. L. G., & Pradas, M. M. (2007). Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 266-275. doi:10.1002/jbm.b.30792 | es_ES |
dc.description.references | Ivirico, J. L. E., Salmerón-Sánchez, M., Ribelles, J. L. G., Pradas, M. M., Soria, J. M., Gomes, M. E., … Mano, J. F. (2009). Proliferation and differentiation of goat bone marrow stromal cells in 3D scaffolds with tunable hydrophilicity. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(1), 277-286. doi:10.1002/jbm.b.31400 | es_ES |
dc.description.references | Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399 | es_ES |
dc.description.references | Boxberg, Y., Schnabelrauch, M., Vogt, S., Sánchez, M. S., Ferrer, G. G., Pradas, M. M., & Antón, J. S. (2006). Effect of hydrophilicity on the properties of a degradable polylactide. Journal of Polymer Science Part B: Polymer Physics, 44(4), 656-664. doi:10.1002/polb.20723 | es_ES |
dc.description.references | Salgado, A. J., Coutinho, O. P., & Reis, R. L. (2004). Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular Bioscience, 4(8), 743-765. doi:10.1002/mabi.200400026 | es_ES |
dc.description.references | Sprio, S., Ruffini, A., Valentini, F., D’Alessandro, T., Sandri, M., Panseri, S., & Tampieri, A. (2011). Biomimesis and biomorphic transformations: New concepts applied to bone regeneration. Journal of Biotechnology, 156(4), 347-355. doi:10.1016/j.jbiotec.2011.07.034 | es_ES |
dc.description.references | Barone, D. T.-J., Raquez, J.-M., & Dubois, P. (2011). Bone-guided regeneration: from inert biomaterials to bioactive polymer (nano)composites. Polymers for Advanced Technologies, 22(5), 463-475. doi:10.1002/pat.1845 | es_ES |
dc.description.references | Jones, J. R. (2009). New trends in bioactive scaffolds: The importance of nanostructure. Journal of the European Ceramic Society, 29(7), 1275-1281. doi:10.1016/j.jeurceramsoc.2008.08.003 | es_ES |
dc.description.references | Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1-3), 1-70. doi:10.1016/j.mser.2009.05.001 | es_ES |
dc.description.references | Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 6(8), 2874-2888. doi:10.1016/j.actbio.2010.02.012 | es_ES |
dc.description.references | Boccaccini, A. R., Erol, M., Stark, W. J., Mohn, D., Hong, Z., & Mano, J. F. (2010). Polymer/bioactive glass nanocomposites for biomedical applications: A review. Composites Science and Technology, 70(13), 1764-1776. doi:10.1016/j.compscitech.2010.06.002 | es_ES |
dc.description.references | Hanemann, T., & Szabó, D. V. (2010). Polymer-Nanoparticle Composites: From Synthesis to Modern Applications. Materials, 3(6), 3468-3517. doi:10.3390/ma3063468 | es_ES |
dc.description.references | Pantaleón, R., & González-Benito, J. (2010). Structure and thermostability of PMMA in PMMA/silica nanocomposites: Effect of high-energy ball milling and the amount of the nanofiller. Polymer Composites, 31(9), 1585-1592. doi:10.1002/pc.20946 | es_ES |
dc.description.references | Bera, O., Pilić, B., Pavličević, J., Jovičić, M., Holló, B., Szécsényi, K. M., & Špirkova, M. (2011). Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochimica Acta, 515(1-2), 1-5. doi:10.1016/j.tca.2010.12.006 | es_ES |
dc.description.references | Yan, S., Yin, J., Cui, L., Yang, Y., & Chen, X. (2011). Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica nanocomposites in simulated body fluid. Colloids and Surfaces B: Biointerfaces, 86(1), 218-224. doi:10.1016/j.colsurfb.2011.04.004 | es_ES |
dc.description.references | Zhang, Z.-G., Li, Z.-H., Mao, X.-Z., & Wang, W.-C. (2011). Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology, 63(5), 437-443. doi:10.1007/s10616-011-9367-4 | es_ES |
dc.description.references | Salinas, A. J., Esbrit, P., & Vallet-Regí, M. (2013). A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci., 1(1), 40-51. doi:10.1039/c2bm00071g | es_ES |
dc.description.references | Izquierdo-Barba, I., Salinas, A. J., & Vallet-Regí, M. (2013). Bioactive Glasses: From Macro to Nano. International Journal of Applied Glass Science, 4(2), 149-161. doi:10.1111/ijag.12028 | es_ES |
dc.description.references | Hajji, P., David, L., Gerard, J. F., Pascault, J. P., & Vigier, G. (1999). Synthesis, structure, and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate. Journal of Polymer Science Part B: Polymer Physics, 37(22), 3172-3187. doi:10.1002/(sici)1099-0488(19991115)37:22<3172::aid-polb2>3.0.co;2-r | es_ES |
dc.description.references | Catauro, M., Raucci, M. G., De Gaetano, F., & Marotta, A. (2003). Journal of Materials Science, 38(14), 3097-3102. doi:10.1023/a:1024773113001 | es_ES |
dc.description.references | Catauro, M., Raucci, M. G., de Gaetano, F., Buri, A., Marotta, A., & Ambrosio, L. (2004). Sol–gel synthesis, structure and bioactivity of Polycaprolactone/CaO • SiO2hybrid material. Journal of Materials Science: Materials in Medicine, 15(9), 991-995. doi:10.1023/b:jmsm.0000042684.13247.38 | es_ES |
dc.description.references | Nie, K., Pang, W., Wang, Y., Lu, F., & Zhu, Q. (2005). Effects of specific bonding interactions in poly(ɛ-caprolactone)/silica hybrid materials on optical transparency and melting behavior. Materials Letters, 59(11), 1325-1328. doi:10.1016/j.matlet.2004.12.034 | es_ES |
dc.description.references | Zou, H., Wu, S., & Shen, J. (2008). Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chemical Reviews, 108(9), 3893-3957. doi:10.1021/cr068035q | es_ES |
dc.description.references | Poologasundarampillai, G., Ionescu, C., Tsigkou, O., Murugesan, M., Hill, R. G., Stevens, M. M., … Jones, J. R. (2010). Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 20(40), 8952. doi:10.1039/c0jm00930j | es_ES |
dc.description.references | Lee, E.-J., Teng, S.-H., Jang, T.-S., Wang, P., Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2010). Nanostructured poly(ε-caprolactone)–silica xerogel fibrous membrane for guided bone regeneration. Acta Biomaterialia, 6(9), 3557-3565. doi:10.1016/j.actbio.2010.03.022 | es_ES |
dc.description.references | Vallés Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2009). Biomimetic apatite coating on P(EMA-co-HEA)/SiO2 hybrid nanocomposites. Polymer, 50(13), 2874-2884. doi:10.1016/j.polymer.2009.04.022 | es_ES |
dc.description.references | Kawai, T., Ohtsuki, C., Kamitakahara, M., Hosoya, K., Tanihara, M., Miyazaki, T., … Konagaya, S. (2007). In vitro apatite formation on polyamide containing carboxyl groups modified with silanol groups. Journal of Materials Science: Materials in Medicine, 18(6), 1037-1042. doi:10.1007/s10856-006-0081-2 | es_ES |
dc.description.references | Oliveira, A. (2003). Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials, 24(15), 2575-2584. doi:10.1016/s0142-9612(03)00060-7 | es_ES |
dc.description.references | Rhee, S. H. (2003). Effect of Silica Content on the Bioactivity and Mechanical Properties of Poly(ε-Caprolactone)/Silica Hybrid containing Calcium Salt. Key Engineering Materials, 240-242, 187-190. doi:10.4028/www.scientific.net/kem.240-242.187 | es_ES |
dc.description.references | Kokubo, T. (2005). Design of bioactive bone substitutes based on biomineralization process. Materials Science and Engineering: C, 25(2), 97-104. doi:10.1016/j.msec.2005.01.002 | es_ES |
dc.description.references | Rimer, J. D., Trofymluk, O., Navrotsky, A., Lobo, R. F., & Vlachos, D. G. (2007). Kinetic and Thermodynamic Studies of Silica Nanoparticle Dissolution. Chemistry of Materials, 19(17), 4189-4197. doi:10.1021/cm070708d | es_ES |
dc.description.references | Hernández, J. C. R., Pradas, M. M., & Ribelles, J. L. G. (2008). Properties of poly(2-hydroxyethyl acrylate)-silica nanocomposites obtained by the sol–gel process. Journal of Non-Crystalline Solids, 354(17), 1900-1908. doi:10.1016/j.jnoncrysol.2007.10.016 | es_ES |
dc.description.references | Vallés-Lluch, A., Costa, E., Gallego Ferrer, G., Monleón Pradas, M., & Salmerón-Sánchez, M. (2010). Structure and biological response of polymer/silica nanocomposites prepared by sol–gel technique. Composites Science and Technology, 70(13), 1789-1795. doi:10.1016/j.compscitech.2010.07.008 | es_ES |
dc.description.references | Vallés-Lluch, A., Rodríguez-Hernández, J. C., Ferrer, G. G., & Pradas, M. M. (2010). Synthesis and characterization of poly(EMA-co-HEA)/SiO2 nanohybrids. European Polymer Journal, 46(7), 1446-1455. doi:10.1016/j.eurpolymj.2010.04.010 | es_ES |
dc.description.references | Vallés-Lluch, A., Gallego Ferrer, G., & Monleón Pradas, M. (2010). Effect of the silica content on the physico-chemical and relaxation properties of hybrid polymer/silica nanocomposites of P(EMA-co-HEA). European Polymer Journal, 46(5), 910-917. doi:10.1016/j.eurpolymj.2010.02.004 | es_ES |
dc.description.references | Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. doi:10.1016/j.biomaterials.2006.01.017 | es_ES |
dc.description.references | Brinker, C. ., Keefer, K. ., Schaefer, D. ., & Ashley, C. . (1982). Sol-gel transition in simple silicates. Journal of Non-Crystalline Solids, 48(1), 47-64. doi:10.1016/0022-3093(82)90245-9 | es_ES |
dc.description.references | Anselme, K., Ponche, A., & Bigerelle, M. (2010). Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1487-1507. doi:10.1243/09544119jeim901 | es_ES |
dc.description.references | Palacio, M. L. B., & Bhushan, B. (2012). Bioadhesion: a review of concepts and applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1967), 2321-2347. doi:10.1098/rsta.2011.0483 | es_ES |
dc.description.references | Keselowsky, B. G., Collard, D. M., & Garcia, A. J. (2005). Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proceedings of the National Academy of Sciences, 102(17), 5953-5957. doi:10.1073/pnas.0407356102 | es_ES |
dc.description.references | Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology-Cell Physiology, 290(6), C1640-C1650. doi:10.1152/ajpcell.00455.2005 | es_ES |