- -

τ-metrizable spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

τ-metrizable spaces

Show simple item record

Files in this item

dc.contributor.author Megaritis, A.C. es_ES
dc.date.accessioned 2018-10-05T07:39:25Z
dc.date.available 2018-10-05T07:39:25Z
dc.date.issued 2018-10-04
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/109460
dc.description.abstract [EN] In [1], A. A. Borubaev introduced the concept of τ-metric space, where τ is an arbitrary cardinal number. The class of τ-metric spaces as τ runs through the cardinal numbers contains all ordinary metric spaces (for τ = 1) and thus these spaces are a generalization of metric spaces. In this paper the notion of τ-metrizable space is considered. es_ES
dc.description.sponsorship The author would like to thank both referees for their valuable comments and suggestions. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject τ-metric space es_ES
dc.subject τ-metrizable space es_ES
dc.subject τ-metrization theorem es_ES
dc.title τ-metrizable spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2018-10-04T12:57:43Z
dc.identifier.doi 10.4995/agt.2018.9009
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Megaritis, A. (2018). τ-metrizable spaces. Applied General Topology. 19(2):253-260. doi:10.4995/agt.2018.9009 es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2018.9009 es_ES
dc.description.upvformatpinicio 253 es_ES
dc.description.upvformatpfin 260 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.relation.references A. A. Borubaev, On some generalizations of metric, normed, and unitary spaces, Topology and its Applications 201 (2016), 344-349. https://doi.org/10.1016/j.topol.2015.12.045 es_ES
dc.relation.references R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. es_ES
dc.relation.references J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. es_ES
dc.relation.references L. A. Steen and J. A. Jr. Seebach, Counterexamples in topology, Dover Publications, Inc., Mineola, NY, 1995. es_ES
dc.relation.references S. Willard, General topology, Dover Publications, Inc., Mineola, NY, 2004. es_ES


This item appears in the following Collection(s)

Show simple item record