Mostrar el registro sencillo del ítem
dc.contributor.author | Megaritis, A.C. | es_ES |
dc.date.accessioned | 2018-10-05T07:39:25Z | |
dc.date.available | 2018-10-05T07:39:25Z | |
dc.date.issued | 2018-10-04 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/109460 | |
dc.description.abstract | [EN] In [1], A. A. Borubaev introduced the concept of τ-metric space, where τ is an arbitrary cardinal number. The class of τ-metric spaces as τ runs through the cardinal numbers contains all ordinary metric spaces (for τ = 1) and thus these spaces are a generalization of metric spaces. In this paper the notion of τ-metrizable space is considered. | es_ES |
dc.description.sponsorship | The author would like to thank both referees for their valuable comments and suggestions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | τ-metric space | es_ES |
dc.subject | τ-metrizable space | es_ES |
dc.subject | τ-metrization theorem | es_ES |
dc.title | τ-metrizable spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2018-10-04T12:57:43Z | |
dc.identifier.doi | 10.4995/agt.2018.9009 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Megaritis, A. (2018). τ-metrizable spaces. Applied General Topology. 19(2):253-260. https://doi.org/10.4995/agt.2018.9009 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2018.9009 | es_ES |
dc.description.upvformatpinicio | 253 | es_ES |
dc.description.upvformatpfin | 260 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | A. A. Borubaev, On some generalizations of metric, normed, and unitary spaces, Topology and its Applications 201 (2016), 344-349. https://doi.org/10.1016/j.topol.2015.12.045 | es_ES |
dc.description.references | R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989. | es_ES |
dc.description.references | J. R. Munkres, Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. | es_ES |
dc.description.references | L. A. Steen and J. A. Jr. Seebach, Counterexamples in topology, Dover Publications, Inc., Mineola, NY, 1995. | es_ES |
dc.description.references | S. Willard, General topology, Dover Publications, Inc., Mineola, NY, 2004. | es_ES |