- -

Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Rubio, Francisco es_ES
dc.contributor.author Valero, Francisco es_ES
dc.date.accessioned 2018-10-05T09:38:02Z
dc.date.available 2018-10-05T09:38:02Z
dc.date.issued 2018-10-04
dc.identifier.uri http://hdl.handle.net/10251/109506
dc.description.abstract [EN] The designing of an efficient warehouse management system is a key factor to improve productivity and reduce costs. The use of Automated Guided Vehicles (AVGs) in Material Handling Systems (MHS) and Flexible Manufacturing Systems (FMS) can help to that purpose. This paper is intended to provide insight regarding the technical and financial suitability of the implementation of a fleet of AGVs. This is carried out by means of a fuzzy set/qualitative comparative analysis (fsQCA) by measuring the level of satisfaction of managerial decision makers. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Multidisciplinary Journal for Education, Social and Technological Sciences
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Fuzzy sets es_ES
dc.subject Qualitative comparative analysis es_ES
dc.subject Autonomous guided vehicles es_ES
dc.subject Conflict resolution es_ES
dc.subject Decision-making es_ES
dc.subject Material handling systems es_ES
dc.subject Flexible manufacturing systems es_ES
dc.title Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs) es_ES
dc.type Artículo es_ES
dc.date.updated 2018-10-05T08:18:09Z
dc.identifier.doi 10.4995/muse.2018.10722
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs). Multidisciplinary Journal for Education, Social and Technological Sciences. 5(2):97-105. https://doi.org/10.4995/muse.2018.10722 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/muse.2018.10722 es_ES
dc.description.upvformatpinicio 97 es_ES
dc.description.upvformatpfin 105 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5
dc.description.issue 2
dc.identifier.eissn 2341-2593
dc.description.references Berbegal-Mirabent, J.; Llopis-Albert, C. (2015). Applications of Fuzzy Logic for Determining the Driving Forces in Collaborative Research Contracts. J. Bus. Res., 69 (4), 1446-1451. https://doi.org/10.1016/j.jbusres.2015.10.123 es_ES
dc.description.references Biçer, I., Seifert, R.W., (2017). Optimal Dynamic Order Scheduling under Capacity Constraints Given Demand-Forecast Evolution. Production and Operations Management 26(12), 2266-2286. https://doi.org/10.1111/poms.12759 es_ES
dc.description.references Fazlollahtabar, H., Saidi-Mehrabad, M. (2015). Autonomous Guided Vehicles: Methods and Models for Optimal Path Planning. Springer. https://doi.org/10.1007/978-3-319-14747-5 ISBN 978-3-319-14747-5. es_ES
dc.description.references Gourgand, M., Sun, X.C., Tchernev, N., 1995. Choice of the guide path layout for an AGV based material handling system. Emerging Technologies and Factory Automation, 1995. ETFA '95, Proceedings., 1995 INRIA/IEEE Symposium on. https://doi.org/10.1109/ETFA.1995.496688 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research 68, 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027 es_ES
dc.description.references Llopis-Albert, C., Palacios-Marqués, D. (2016). Applied Mathematical Problems in Engineering. Multidisciplinary Journal for Education 3(2), 1-14. https://doi.org/10.4995/muse.2016.6679 es_ES
dc.description.references Llopis-Albert, C., Merigó, J.M., Xu, Y., Liao, H. (2017). Application of Fuzzy Set/Qualitative Comparative Analysis to Public Participation Projects in Support of the EU Water Framework Directive. Water Environment Research, 89. es_ES
dc.description.references Mendel, J. M.; Korjani, M. M. (2012). Charles Ragin's Fuzzy Set Qualitative Comparative Analysis (fsQCA) Used for Linguistic Summarizations. Inf. Sci., 202, 1-23. https://doi.org/10.1016/j.ins.2012.02.039 es_ES
dc.description.references Mendel, J. M., Korjani, M. M. (2013). Theoretical Aspects of Fuzzy Set Qualitative Comparative Analysis (fsQCA). Inf. Sci., 237, 137-161. https://doi.org/10.1016/j.ins.2013.02.048 es_ES
dc.description.references Meyer, A. D., Tsui, A.S. and Hinings, C.R. (1993). Configurational approaches to organizational analysis. Academy of Management Journal, 36(6), 1175-1195. es_ES
dc.description.references Quine, W. V. (1952). The problem of simplifying truth functions. The American Mathematical Monthly, 59(8), 521-531. https://doi.org/10.1080/00029890.1952.11988183 es_ES
dc.description.references Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L. (2013). A review of dynamic vehicle routing problems. European Journal of Operational Research 225, 1-11. https://doi.org/10.1016/j.ejor.2012.08.015 es_ES
dc.description.references Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press. https://doi.org/10.7208/chicago/9780226702797.001.0001 es_ES
dc.description.references Sarker, B.R., Gurav, S.S. (2005). Route planning for automated guided vehicles in a manufacturing facility. International Journal of Production Research 43(21), 4659-4683. https://doi.org/10.1080/00207540500140807 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem