- -

Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality

Mostrar el registro completo del ítem

Cortes-Lopez, V.; Blasco Ivars, J.; Aleixos Borrás, MN.; Cubero García, S.; Talens Oliag, P. (2017). Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality. Food and Bioprocess Technology. 10(10):1755-1766. https://doi.org/10.1007/s11947-017-1943-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/110348

Ficheros en el ítem

Metadatos del ítem

Título: Visible and near-infrared diffuse reflectance spectroscopy for fast qualitative and quantitative assessment of nectarine quality
Autor: Cortes-Lopez, Victoria Blasco Ivars, José Aleixos Borrás, María Nuria Cubero García, Sergio Talens Oliag, Pau
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Fecha difusión:
Resumen:
[EN] Visible and near-infrared spectroscopy has been widely used as a non-invasive and rapid-assessment technique for the quality control of agricultural products. In this study, 325 samples of nectarines representing two ...[+]
Palabras clave: Fruit quality , Spectroscopy , Nectarine , Chemometrics , Prediction , Discrimination
Derechos de uso: Reserva de todos los derechos
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-017-1943-y
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11947-017-1943-y
Código del Proyecto:
info:eu-repo/grantAgreement/GV//AICO/2015/122/
...[+]
info:eu-repo/grantAgreement/GV//AICO/2015/122/
info:eu-repo/grantAgreement/MINECO//RTA2015-00078-00-00/ES/Sistemas no destructivos para la determinación automática de la calidad interna de frutas en línea utilizando métodos ópticos e información espectral/
info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/
info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F122/
info:eu-repo/grantAgreement/INIA//RTA2015-00078-00-00/
info:eu-repo/grantAgreement/MECD//FPU13%2F04202/ES/FPU13%2F04202/
info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/
[-]
Agradecimientos:
This work was partially funded by the Generalitat Valenciana through project AICO/2015/122 and by the INIA and FEDER funds through projects RTA2012-00062-C04-01 and 03, and RTA2015-00078-00-00. Victoria Lopez Cortes thanks ...[+]
Tipo: Artículo

References

Bachion de Santana, F., Caixeta Gontijo, L., Mitsutake, H., Júnior Mazivilla, S., Maria de Souza, L., & Borges Neto, W. (2016). Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry, 209, 228–233.

Bakeev, K. A. (2010). Process analytical technology. United Kingdom: Wiley.

Bonany, J., Buehler, A., Carbó, J., Codarin, S., Donati, F., Echeverria, G., Egger, S., Guerra, W., Hilaire, C., Höller, I., Iglesias, I., Jesionkowska, K., Konopacka, D., Kruczynska, D., Martinelli, A., Pitiot, C., Sansavini, S., Stehr, R., & Schoorl, F. (2013). Consumer eating quality acceptance of new apple varieties in different European countries. Food Quality and Preference, 30, 250–259. [+]
Bachion de Santana, F., Caixeta Gontijo, L., Mitsutake, H., Júnior Mazivilla, S., Maria de Souza, L., & Borges Neto, W. (2016). Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics. Food Chemistry, 209, 228–233.

Bakeev, K. A. (2010). Process analytical technology. United Kingdom: Wiley.

Bonany, J., Buehler, A., Carbó, J., Codarin, S., Donati, F., Echeverria, G., Egger, S., Guerra, W., Hilaire, C., Höller, I., Iglesias, I., Jesionkowska, K., Konopacka, D., Kruczynska, D., Martinelli, A., Pitiot, C., Sansavini, S., Stehr, R., & Schoorl, F. (2013). Consumer eating quality acceptance of new apple varieties in different European countries. Food Quality and Preference, 30, 250–259.

Bruun, S. W., Sondergaard, I., & Jacobsen, S. (2007). Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. Journal of Agricultural and Food Chemistry, 55, 7234–7243.

Carlomagno, G., Capozzo, L., Attolico, G., & Distante, A. (2004). Non-destructive grading of peaches by near-infrared spectrometry. Infrared Physics & Technology, 46, 23–29.

Carr, G. L, Chubar, O., Dumas, P. (2005). Multichannel detection with a synchrotron light source: Design and potential. Spectrochemical Analysis Using Multichannel Detectors Analytical Chemistry Series, edited by Bhargava P, Levin I. Chapter 3, (pp. 56–84). Oxford: Wiley-Blackwell

Cayuela, J. A., & Weiland, C. (2010). Intact orange quality prediction with two portable NIR spectrometers. Postharvest Biology and Technology, 58(2), 113–120.

Clareton, M. (2000). Peach and nectarine production in France: trends, consumption and perspectives. Summaries Prunus Breeders Meeting. EMPRABA, Clima Temperado. Pelotas (RS) Brazil, November 29 to December 2000, pp. 83–91

Cortés, V., Ortiz, C., Aleixos, N., Blasco, J., Cubero, S., & Talens, P. (2016). A new internal quality index for mango and its prediction by external visible and near infrared reflection spectroscopy. Postharvest Biology and Technology, 118, 148–158.

Crisosto, C. H. (2002). How do we increase peach consumption? Proceedings of 5th International Symposium on Peach, ISHS. Acta Horticulturae, 592, 601–605.

Crisosto, C., & Crisosto, G. (2005). Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid meeting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biology and Technology, 38, 239–246.

Crisosto, C. H., Garner, D., Crisosto, G. M., Wiley, P., & Southwick, S. (1997). Evaluation of the minimum maturity index for new cherry cultivars growing in the San Joaquin Valley. Visalia: California Cherry Growers Association.

Crisosto, C. H., Crisosto, G. M., & Ritenour, M. A. (2002). Testing the reliability of skin color as an indicator of quality for early season ‘Brooks’ (Prunus avium L.) cherry. Postharvest Biology and Technology, 24, 147–154.

Crisosto, C. H., Crisosto, G. M., & Metheney, P. (2003). Consumer acceptance of ‘Brooks’ and ‘Bing’ cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biology and Technology, 28, 159–167.

Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4, 487–504.

Cunha, L. C., Teixeira, G. H. A., Nardini, V., & Walsh, K. (2016). Quality evaluation of intact açaí and juçara fruit by means of near infrared spectroscopy. Postharvest Biology and Technology, 112, 64–74.

Della Cara, R. (2005). In calo i consumi e l’export de pesche e nettarine italiane. Rivista di Frutticoltura, 7–8, 19–20.

Downey, G. (1997). Authentication of food and food ingredients by near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 4, 47–61.

Eskin, N.A.M. & Hoehn, E. (2013). Fruits and vegetables. Eskin, N.A.M., Shahidi, F. (Eds.), Biochemistry of foods, 3rd edn. Amsterdam, The Netherlands: Elsevier Inc. pp. 49–126.

Faber, N. M. (1999). Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions. Analytical Chemistry, (71), 557–565.

Fang, L., Li, H., Liu, Z., & Xian, X. (2013). Online evaluation of yellow peach quality by visible and near-infrared spectroscopy. Advance Journal of Food Science and Technology, 5(5), 606–612.

Ferrer, P., Montesinos, J. L., Valero, F., & Solá, C. (2001). Production of native and recombinant lipases by Candida rugosa. Applied Biochemistry and Biotechnology, 95(3), 221–255.

Font, D., Tresanchez, M., Pallejà, T., Teixidó, M., Martinez, D., Moreno, J., & Palacín, J. (2014). An image processing method for in-line nectarine variety verification based on the comparison of skin feature histogram vectors. Computers and Electronics in Agriculture, 102, 112–119.

Fu, X., Yibin, Y., Lu, H., Xu, H., & Yu, H. (2007). FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection. Sensing and Instrumentation for Food Quality and Safety, 1, 29–35.

GenCat: Generalitat de Cataluña. 2013.Technical report 1/2011 and Technical Indicator A2. <http://www20.gencat.cat> (accessed 13.05.13).

Ghiani, A., Negrini, N., Morgutti, S., Baldin, F., Nocito, F. F., Spinardi, A., Mignani, I., Bassi, D., & Cocucci, M. (2011). Melting of ‘Big Top’ nectarine fruit: some physiological, biochemical, and molecular aspects. Journal of the American Society for Horticultural Science, 136, 61–68.

Golic, M., & Walsh, K. B. (2006). Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Analytica Chimica Acta, 555(2), 286–291.

Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.

He, Y., Li, X. L., & Shao, Y. N. (2006). Discrimination of varieties of apple using near infrared spectra based on principal component analysis and artificial neural network model. Spectroscopy and Spectral Analysis, 26, 850–853.

Hernández, A., He, Y., & García, A. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.

Huang, H., Yu, H., Xu, H., & Ying, Y. (2008). Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. Journal of Food Engineering, 87(3), 303–313.

Huang, L., Wu, D., Jin, H., Zhang, J., He, Y., & Lou, C. (2011). Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: a case study with mulberry fruit. Biosystems Engineering, 109(4), 377–384.

Iglesias, I. (2013). Peach production in Spain: current situation and trends, from production to consumption. Proceedings of the 4th Conference, Innovation in Fruit Growing, 75–96. D. Milatovic (Ed), Serbia (Belgrad)

Iglesias, I., & Echeverría, G. (2009). Differential effect of cultivar and harvest date on nectarine colour, quality and consumer acceptance. Scientia Horticulturae, 120, 41–50.

Jaiswal, P., Jha, S. N., & Bharadwaj, R. (2012). Non-destructive prediction of quality of intact banana using spectroscopy. Scientia Horticulturae, 135, 14–22.

Kamruzzaman, M., ElMasry, G., Sun, D., & Allen, P. (2012). Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innovate Food Science and Emerging Technologies, 16, 218–226.

Kozak, M., & Scaman, C. H. (2008). Unsupervised classification methods in food sciences: discussion and outlook. Journal of the Science of Food and Agriculture, 88, 1115–1127.

Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, pp. F.4.3.1–F.4.3.8. Wiley, New York.

Liu, Y., Chen, X., & Ouyang, A. (2008). Nondestructive determination of pear internal quality indices by visible and near infrared spectrometry. LWT - Food Science and Technology, 41, 1720–1725.

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technology, 5, 1121–1142.

Lorente, D., Escandell-Montero, P., Cubero, S., Gómez-Sanchis, J., & Blasco, J. (2015). Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. Journal of Food Engineering, 163, 17–21.

Lu, R. (2004). Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31(2), 147–157.

Ma, G., Fu, X. P., Zhou, Y., Ying, Y. B., Xu, H. R., Xie, L. J., & Lin, T. (2007). Nondestructive sugar content determination of peaches by using near infrared spectroscopy technique. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 27(5), 907–910.

Magwaza, L. S., Opara, L. U., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5, 425–444.

Martens, H., Nielsen, J. P., & Engelsen, S. B. (2003). Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures. Analytical Chemistry, 75, 394–404.

Martins, P. A., Cirino de Carvalho, L., Cunha, L. C., Manhas, F., & Teixeira, G. H. (2016). Robust PLS models for soluble solids content and firmness determination in low chilling peach using near infrared spectroscopy (NIR). Postharvest Biology and Technology, 111, 345–351.

McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble-solids assessment of post-harvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13, 131–141.

Merzlyak, M. N., Solo, A. E., & Gitelson, A. A. (2003). Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biology and Technology, 27, 197–211.

Nicolaï, B. M., Beullens, K., Bobelyn, E., Peirs, A., Saeys, W., Theron, I. K., & Lammertyn, J. (2007). Non-destructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biology and Technology, 46, 99–118.

Osborne, B. G., Fearn, T., & Hindle, P. H. (1993). Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed.pp. 123–132). Burnt Mill, Harlow, Essex, England: Longman Group.

Padilla-Zakour, O. I. (2009). Good manufacturing practices. In N. Heredia, I. Wesley, & S. Garcia (Eds.), Microbiologically safe foods (pp. 395–415). New York: John Wiley and Sons Inc..

Peiris, K. H. S., Dull, G. G., Leffler, R. G., & Kays, S. J. (1998). Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. Journal of the American Society for Horticultural Science, 123(5), 898–905.

Pérez-Marín, D., Sánchez, M. T., Paz, P., González-Dugo, V., & Soriano, M. A. (2011). Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy. Food Science and Technology, 44, 1405–1414.

Ravaglia, G., Sansavini, S., Ventura, M., & Tabanelli, D. (1996). Indici di maturazione e miglioramento cualitativo delle pesche. Revista di Frutticoltura, 3, 61–66.

Reita, G., Peano, C., Saranwong, S., & Kawano, S. (2008). An evaluating technique for variety compatibility of fruit applied to a near infrared Brix calibration system: a case study using Brix calibration for nectarines. Journal of Near Infrared Spectroscopy, 16(2), 83–89.

Rodriguez-Campos, J., Escalona-Buendía, H. B., Orozco-Avila, I., Lugo-Cervantes, E., & Jaramillo-Flores, M. E. (2011). Dynamics of volatile and non-volatile compounds in cocoa (Theobroma cacao L.) during fermentation and drying processes using principal components analysis. Food Research International, 44, 250–258.

Sádecká, J., Jakubíková, M., Májek, P., & Kleinová, A. (2016). Classification of plum spirit drinks by synchronous fluorescence spectroscopy. Food Chemistry, 196, 783–790.

Sánchez, M. T., De la Haba, M. J., Guerrero, J. E., Garrido-Varo, A., & Pérez-Marín, D. (2011). Testing of a local approach for the prediction of quality parameters in intact nectarines using a portable NIRS instrument. Postharvest Biology and Technology, 60(2), 130–135.

Santos, P., Santos, F., Santos, J., & Bezerra, H. (2013). Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. Journal of Data Analysis and Information Processing, 1, 30–34.

Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified squares procedures. Analytical Chemistry, 36, 1627–1639.

Shao, Y., He, Y., Gómez, A. H., Pereir, A. G., Qiu, Z., & Zhang, Y. (2007). Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicum esculentum) quality characteristics. Journal of Food Engineering, 81(4), 672–678.

Singh, Z., Singh, R. K., Sane, V. A., & Nath, P. (2013). Mango—postharvest biology and biotechnology. Critical Reviews in Plant Sciences, 32(4), 217–236.

Soares, S. F. C., Gomes, A. A., Galvão Filho, A. R., Araújo, M. C. U., & Galvão, R. K. H. (2013). The successive projections algorithm. Trends in Analytical Chemistry, 42, 84–98.

Tijskens, L. M. M., Zerbini, P. E., Schouten, R. E., Vanoli, M., Jacob, S., Grassi, M., & Torricelli, A. (2007). Assessing harvest maturity in nectarines. Postharvest Biology and Technology, 45, 204–213.

Valero, A., Marín, S., Ramos, A. J., & Sanchis, V. (2007). Effect of preharvest fungicides and interacting fungi on Aspergillus carbonarius growth and ochratoxin A synthesis in dehydrating grapes. Letters in Applied Microbiology, 45, 194–199.

Walsh, K. B., Golic, M., & Greensill, C. V. (2004). Sorting of fruit and vegetables using near infrared spectroscopy: application to soluble solids and dry matter content. Journal of Near Infrared Spectroscopy, 12, 141–148.

Williams, P. C. & Norris, K. H. (1987). Qualitative applications of near infrared reflectance spectroscopy. P. C. Williams & K. H. Norris (Eds.), Near infrared technology in the agricultural and food industries, pp. 241–246. St. Paul, MN: American Association of Cereal Chemist.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem