- -

Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

Show full item record

Rapeyko, A.; Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2017). Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science & Technology. 7(14):3008-3016. https://doi.org/10.1039/c7cy00463j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/110928

Files in this item

Item Metadata

Title: Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst
Author: Rapeyko, Anastasia Arias Carrascal, Karen Sulay Climent Olmedo, María José Corma Canós, Avelino Iborra Chornet, Sara
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Furilydenepropanenitrile derivatives, which are useful as monomers, have been obtained in high yields by coupling the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) and the Knoevenagel condensation ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c7cy00463j
Publisher:
The Royal Society of Chemistry
Publisher version: http://doi.org/10.1039/c7cy00463j
Project ID:
info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
Thanks:
The Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo Program), the Severo Ochoa Program and the EU-Japan Project NOVACAM are gratefully acknowledged.
Type: Artículo

References

Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d

Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b [+]
Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d

Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Amarasekara, A. S., Green, D., & Williams, L. D. (2009). Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran–urea resin. European Polymer Journal, 45(2), 595-598. doi:10.1016/j.eurpolymj.2008.11.012

Hopkins, K. T., Wilson, W. D., Bender, B. C., McCurdy, D. R., Hall, J. E., Tidwell, R. R., … Boykin, D. W. (1998). Extended Aromatic Furan Amidino Derivatives as Anti-Pneumocystis cariniiAgents. Journal of Medicinal Chemistry, 41(20), 3872-3878. doi:10.1021/jm980230c

Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S., Tidwell, R. R., Czarny, A., … Perfect, J. R. (1998). Structure-In Vitro Activity Relationships of Pentamidine Analogues and Dication-Substituted Bis-Benzimidazoles as New Antifungal Agents. Antimicrobial Agents and Chemotherapy, 42(10), 2495-2502. doi:10.1128/aac.42.10.2495

Richter, D. T., & Lash, T. D. (1999). Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the ‘4+1’ synthesis of sapphyrins. Tetrahedron Letters, 40(37), 6735-6738. doi:10.1016/s0040-4039(99)01352-0

Shimo, T., Ueda, S., Suishu, T., & Somekawa, K. (1995). Intramolecular photocycloadditions of 6,6′-dimethyl-4,4′-polymethylenedioxy-di-2-pyrones. Journal of Heterocyclic Chemistry, 32(3), 727-730. doi:10.1002/jhet.5570320304

Lichtenthaler, F. W. (2002). UnsaturatedO- andN-Heterocycles from Carbohydrate Feedstocks. Accounts of Chemical Research, 35(9), 728-737. doi:10.1021/ar010071i

Amarasekara, A. S., Green, D., & McMillan, E. (2008). Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catalysis Communications, 9(2), 286-288. doi:10.1016/j.catcom.2007.06.021

Partenheimer, W., & Grushin, V. V. (2001). Synthesis of 2,5-Diformylfuran and Furan-2,5-Dicarboxylic Acid by Catalytic Air-Oxidation of 5-Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal/Bromide Catalysts. Advanced Synthesis & Catalysis, 343(1), 102-111. doi:10.1002/1615-4169(20010129)343:1<102::aid-adsc102>3.0.co;2-q

Takagaki, A., Takahashi, M., Nishimura, S., & Ebitani, K. (2011). One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts. ACS Catalysis, 1(11), 1562-1565. doi:10.1021/cs200456t

Nie, J., Xie, J., & Liu, H. (2013). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. Journal of Catalysis, 301, 83-91. doi:10.1016/j.jcat.2013.01.007

Carlini, C., Patrono, P., Galletti, A. M. R., Sbrana, G., & Zima, V. (2005). Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General, 289(2), 197-204. doi:10.1016/j.apcata.2005.05.006

Navarro, O. C., Canós, A. C., & Chornet, S. I. (2009). Chemicals from Biomass: Aerobic Oxidation of 5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-Pyridine Complexes on Polymeric and Organofunctionalized Mesoporous Supports. Topics in Catalysis, 52(3), 304-314. doi:10.1007/s11244-008-9153-5

Sádaba, I., Gorbanev, Y. Y., Kegnaes, S., Putluru, S. S. R., Berg, R. W., & Riisager, A. (2012). Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem, 5(1), 284-293. doi:10.1002/cctc.201200482

Yadav, G. D., & Sharma, R. V. (2014). Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 147, 293-301. doi:10.1016/j.apcatb.2013.09.004

Fang, R., Luque, R., & Li, Y. (2016). Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chemistry, 18(10), 3152-3157. doi:10.1039/c5gc03051j

Ben-Daniel, R., Alsters, P., & Neumann, R. (2001). Selective Aerobic Oxidation of Alcohols with a Combination of a Polyoxometalate and Nitroxyl Radical as Catalysts. The Journal of Organic Chemistry, 66(25), 8650-8653. doi:10.1021/jo0105843

Ansari, I. A., & Gree, R. (2002). TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6]. Organic Letters, 4(9), 1507-1509. doi:10.1021/ol025721c

Gamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668b

Wang, N., Liu, R., Chen, J., & Liang, X. (2005). NaNO2-activated, iron–TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chemical Communications, (42), 5322. doi:10.1039/b509167e

Yin, W., Chu, C., Lu, Q., Tao, J., Liang, X., & Liu, R. (2010). Iron Chloride/4-Acetamido-TEMPO/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes. Advanced Synthesis & Catalysis, 352(1), 113-118. doi:10.1002/adsc.200900662

Ma, S., Liu, J., Li, S., Chen, B., Cheng, J., Kuang, J., … Yu, S. (2011). Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Advanced Synthesis & Catalysis, 353(6), 1005-1017. doi:10.1002/adsc.201100033

Cottier, L., Descotes, G., Viollet, E., Lewkowski, J., & Skowroñski, R. (1995). Oxidation of 5-hydroxymethylfurfural and derivatives to furanaldehydes with 2,2,6,6-tetramethylpiperidine oxide radical - co-oxidant pairs. Journal of Heterocyclic Chemistry, 32(3), 927-930. doi:10.1002/jhet.5570320342

Hansen, T. S., Sádaba, I., García-Suárez, E. J., & Riisager, A. (2013). Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 456, 44-50. doi:10.1016/j.apcata.2013.01.042

Fang, C., Dai, J.-J., Xu, H.-J., Guo, Q.-X., & Fu, Y. (2015). Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature. Chinese Chemical Letters, 26(10), 1265-1268. doi:10.1016/j.cclet.2015.07.001

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Natarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106g

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703

Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381g

Wang, P., Zhao, H., Sun, H., Yu, H., chen, S., & Quan, X. (2014). Porous metal–organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NOx with NH3. RSC Adv., 4(90), 48912-48919. doi:10.1039/c4ra07028c

Rapeyko, A., Climent, M. J., Corma, A., Concepción, P., & Iborra, S. (2015). Postsynthesis-Treated Iron-Based Metal-Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 8(19), 3270-3282. doi:10.1002/cssc.201500695

Dhakshinamoorthy, A., Alvaro, M., Hwang, Y. K., Seo, Y.-K., Corma, A., & Garcia, H. (2011). Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 40(40), 10719. doi:10.1039/c1dt10826c

García Márquez, A., Demessence, A., Platero-Prats, A. E., Heurtaux, D., Horcajada, P., Serre, C., … Sanchez, C. (2012). Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for Thin-Film Elaboration. European Journal of Inorganic Chemistry, 2012(32), 5165-5174. doi:10.1002/ejic.201200710

Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027

Položij, M., Rubeš, M., Čejka, J., & Nachtigall, P. (2014). Catalysis by Dynamically Formed Defects in a Metal-Organic Framework Structure: Knoevenagel Reaction Catalyzed by Copper Benzene-1,3,5-tricarboxylate. ChemCatChem, 6(10), 2821-2824. doi:10.1002/cctc.201402411

Morris, R. E., & Čejka, J. (2015). Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 7(5), 381-388. doi:10.1038/nchem.2222

Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130

KERESSZEGI, C., FERRI, D., MALLAT, T., & BAIKER, A. (2005). On the role of CO formation during the aerobic oxidation of alcohols on Pd/Al2O3: an in situ attenuated total reflection infrared study. Journal of Catalysis, 234(1), 64-75. doi:10.1016/j.jcat.2005.05.019

Hui, Z., & Gandini, A. (1992). Polymeric schiff bases bearing furan moieties. European Polymer Journal, 28(12), 1461-1469. doi:10.1016/0014-3057(92)90135-o

Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record