Mostrar el registro sencillo del ítem
dc.contributor.author | Rapeyko, Anastasia | es_ES |
dc.contributor.author | Arias Carrascal, Karen Sulay | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.date.accessioned | 2018-10-20T04:31:21Z | |
dc.date.available | 2018-10-20T04:31:21Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/110928 | |
dc.description.abstract | [EN] Furilydenepropanenitrile derivatives, which are useful as monomers, have been obtained in high yields by coupling the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) and the Knoevenagel condensation of DFF with methylene active compounds in a one pot process. The oxidation step was studied using an Fe containing metal-organic framework (MIL-100(Fe), and Fe(BTC)), a Cu containing MOF (Cu3(BTC)(2)), an Fe exchanged HY zeolite and homogeneous Fe salts in the presence of 2,2,6,6-tetramethylpiperidine- 1-oxide (TEMPO) as a cocatalyst, NaNO2 as an additive and oxygen as the terminal oxidant. The results showed that the synthesized MIL-100(Fe) post treated with NH4F was the most active catalyst achieving 100% HMF conversion with 100% selectivity to DFF and can be reused with good success. Additionally, the catalytic system has been applied to the oxidation of different primary and secondary alcohols to aldehydes and ketones under mild reaction conditions with good success. The second step, the Knoevenagel condensation of the obtained DFF with malononitrile or ethyl cyanoacetate, was performed taking advantage of the basicity of the reaction medium. | es_ES |
dc.description.sponsorship | The Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo Program), the Severo Ochoa Program and the EU-Japan Project NOVACAM are gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c7cy00463j | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Rapeyko, A.; Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2017). Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science & Technology. 7(14):3008-3016. https://doi.org/10.1039/c7cy00463j | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1039/c7cy00463j | es_ES |
dc.description.upvformatpinicio | 3008 | es_ES |
dc.description.upvformatpfin | 3016 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\355720 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d | es_ES |
dc.description.references | Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b | es_ES |
dc.description.references | Amarasekara, A. S., Green, D., & Williams, L. D. (2009). Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran–urea resin. European Polymer Journal, 45(2), 595-598. doi:10.1016/j.eurpolymj.2008.11.012 | es_ES |
dc.description.references | Hopkins, K. T., Wilson, W. D., Bender, B. C., McCurdy, D. R., Hall, J. E., Tidwell, R. R., … Boykin, D. W. (1998). Extended Aromatic Furan Amidino Derivatives as Anti-Pneumocystis cariniiAgents. Journal of Medicinal Chemistry, 41(20), 3872-3878. doi:10.1021/jm980230c | es_ES |
dc.description.references | Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S., Tidwell, R. R., Czarny, A., … Perfect, J. R. (1998). Structure-In Vitro Activity Relationships of Pentamidine Analogues and Dication-Substituted Bis-Benzimidazoles as New Antifungal Agents. Antimicrobial Agents and Chemotherapy, 42(10), 2495-2502. doi:10.1128/aac.42.10.2495 | es_ES |
dc.description.references | Richter, D. T., & Lash, T. D. (1999). Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the ‘4+1’ synthesis of sapphyrins. Tetrahedron Letters, 40(37), 6735-6738. doi:10.1016/s0040-4039(99)01352-0 | es_ES |
dc.description.references | Shimo, T., Ueda, S., Suishu, T., & Somekawa, K. (1995). Intramolecular photocycloadditions of 6,6′-dimethyl-4,4′-polymethylenedioxy-di-2-pyrones. Journal of Heterocyclic Chemistry, 32(3), 727-730. doi:10.1002/jhet.5570320304 | es_ES |
dc.description.references | Lichtenthaler, F. W. (2002). UnsaturatedO- andN-Heterocycles from Carbohydrate Feedstocks. Accounts of Chemical Research, 35(9), 728-737. doi:10.1021/ar010071i | es_ES |
dc.description.references | Amarasekara, A. S., Green, D., & McMillan, E. (2008). Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catalysis Communications, 9(2), 286-288. doi:10.1016/j.catcom.2007.06.021 | es_ES |
dc.description.references | Partenheimer, W., & Grushin, V. V. (2001). Synthesis of 2,5-Diformylfuran and Furan-2,5-Dicarboxylic Acid by Catalytic Air-Oxidation of 5-Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal/Bromide Catalysts. Advanced Synthesis & Catalysis, 343(1), 102-111. doi:10.1002/1615-4169(20010129)343:1<102::aid-adsc102>3.0.co;2-q | es_ES |
dc.description.references | Takagaki, A., Takahashi, M., Nishimura, S., & Ebitani, K. (2011). One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts. ACS Catalysis, 1(11), 1562-1565. doi:10.1021/cs200456t | es_ES |
dc.description.references | Nie, J., Xie, J., & Liu, H. (2013). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. Journal of Catalysis, 301, 83-91. doi:10.1016/j.jcat.2013.01.007 | es_ES |
dc.description.references | Carlini, C., Patrono, P., Galletti, A. M. R., Sbrana, G., & Zima, V. (2005). Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General, 289(2), 197-204. doi:10.1016/j.apcata.2005.05.006 | es_ES |
dc.description.references | Navarro, O. C., Canós, A. C., & Chornet, S. I. (2009). Chemicals from Biomass: Aerobic Oxidation of 5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-Pyridine Complexes on Polymeric and Organofunctionalized Mesoporous Supports. Topics in Catalysis, 52(3), 304-314. doi:10.1007/s11244-008-9153-5 | es_ES |
dc.description.references | Sádaba, I., Gorbanev, Y. Y., Kegnaes, S., Putluru, S. S. R., Berg, R. W., & Riisager, A. (2012). Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem, 5(1), 284-293. doi:10.1002/cctc.201200482 | es_ES |
dc.description.references | Yadav, G. D., & Sharma, R. V. (2014). Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 147, 293-301. doi:10.1016/j.apcatb.2013.09.004 | es_ES |
dc.description.references | Fang, R., Luque, R., & Li, Y. (2016). Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chemistry, 18(10), 3152-3157. doi:10.1039/c5gc03051j | es_ES |
dc.description.references | Ben-Daniel, R., Alsters, P., & Neumann, R. (2001). Selective Aerobic Oxidation of Alcohols with a Combination of a Polyoxometalate and Nitroxyl Radical as Catalysts. The Journal of Organic Chemistry, 66(25), 8650-8653. doi:10.1021/jo0105843 | es_ES |
dc.description.references | Ansari, I. A., & Gree, R. (2002). TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6]. Organic Letters, 4(9), 1507-1509. doi:10.1021/ol025721c | es_ES |
dc.description.references | Gamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668b | es_ES |
dc.description.references | Wang, N., Liu, R., Chen, J., & Liang, X. (2005). NaNO2-activated, iron–TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chemical Communications, (42), 5322. doi:10.1039/b509167e | es_ES |
dc.description.references | Yin, W., Chu, C., Lu, Q., Tao, J., Liang, X., & Liu, R. (2010). Iron Chloride/4-Acetamido-TEMPO/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes. Advanced Synthesis & Catalysis, 352(1), 113-118. doi:10.1002/adsc.200900662 | es_ES |
dc.description.references | Ma, S., Liu, J., Li, S., Chen, B., Cheng, J., Kuang, J., … Yu, S. (2011). Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Advanced Synthesis & Catalysis, 353(6), 1005-1017. doi:10.1002/adsc.201100033 | es_ES |
dc.description.references | Cottier, L., Descotes, G., Viollet, E., Lewkowski, J., & Skowroñski, R. (1995). Oxidation of 5-hydroxymethylfurfural and derivatives to furanaldehydes with 2,2,6,6-tetramethylpiperidine oxide radical - co-oxidant pairs. Journal of Heterocyclic Chemistry, 32(3), 927-930. doi:10.1002/jhet.5570320342 | es_ES |
dc.description.references | Hansen, T. S., Sádaba, I., García-Suárez, E. J., & Riisager, A. (2013). Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 456, 44-50. doi:10.1016/j.apcata.2013.01.042 | es_ES |
dc.description.references | Fang, C., Dai, J.-J., Xu, H.-J., Guo, Q.-X., & Fu, Y. (2015). Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature. Chinese Chemical Letters, 26(10), 1265-1268. doi:10.1016/j.cclet.2015.07.001 | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Natarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106g | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703 | es_ES |
dc.description.references | Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381g | es_ES |
dc.description.references | Wang, P., Zhao, H., Sun, H., Yu, H., chen, S., & Quan, X. (2014). Porous metal–organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NOx with NH3. RSC Adv., 4(90), 48912-48919. doi:10.1039/c4ra07028c | es_ES |
dc.description.references | Rapeyko, A., Climent, M. J., Corma, A., Concepción, P., & Iborra, S. (2015). Postsynthesis-Treated Iron-Based Metal-Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 8(19), 3270-3282. doi:10.1002/cssc.201500695 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Hwang, Y. K., Seo, Y.-K., Corma, A., & Garcia, H. (2011). Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 40(40), 10719. doi:10.1039/c1dt10826c | es_ES |
dc.description.references | García Márquez, A., Demessence, A., Platero-Prats, A. E., Heurtaux, D., Horcajada, P., Serre, C., … Sanchez, C. (2012). Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for Thin-Film Elaboration. European Journal of Inorganic Chemistry, 2012(32), 5165-5174. doi:10.1002/ejic.201200710 | es_ES |
dc.description.references | Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027 | es_ES |
dc.description.references | Položij, M., Rubeš, M., Čejka, J., & Nachtigall, P. (2014). Catalysis by Dynamically Formed Defects in a Metal-Organic Framework Structure: Knoevenagel Reaction Catalyzed by Copper Benzene-1,3,5-tricarboxylate. ChemCatChem, 6(10), 2821-2824. doi:10.1002/cctc.201402411 | es_ES |
dc.description.references | Morris, R. E., & Čejka, J. (2015). Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 7(5), 381-388. doi:10.1038/nchem.2222 | es_ES |
dc.description.references | Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130 | es_ES |
dc.description.references | KERESSZEGI, C., FERRI, D., MALLAT, T., & BAIKER, A. (2005). On the role of CO formation during the aerobic oxidation of alcohols on Pd/Al2O3: an in situ attenuated total reflection infrared study. Journal of Catalysis, 234(1), 64-75. doi:10.1016/j.jcat.2005.05.019 | es_ES |
dc.description.references | Hui, Z., & Gandini, A. (1992). Polymeric schiff bases bearing furan moieties. European Polymer Journal, 28(12), 1461-1469. doi:10.1016/0014-3057(92)90135-o | es_ES |
dc.description.references | Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5 | es_ES |