- -

Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rapeyko, Anastasia es_ES
dc.contributor.author Arias Carrascal, Karen Sulay es_ES
dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.date.accessioned 2018-10-20T04:31:21Z
dc.date.available 2018-10-20T04:31:21Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/110928
dc.description.abstract [EN] Furilydenepropanenitrile derivatives, which are useful as monomers, have been obtained in high yields by coupling the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) and the Knoevenagel condensation of DFF with methylene active compounds in a one pot process. The oxidation step was studied using an Fe containing metal-organic framework (MIL-100(Fe), and Fe(BTC)), a Cu containing MOF (Cu3(BTC)(2)), an Fe exchanged HY zeolite and homogeneous Fe salts in the presence of 2,2,6,6-tetramethylpiperidine- 1-oxide (TEMPO) as a cocatalyst, NaNO2 as an additive and oxygen as the terminal oxidant. The results showed that the synthesized MIL-100(Fe) post treated with NH4F was the most active catalyst achieving 100% HMF conversion with 100% selectivity to DFF and can be reused with good success. Additionally, the catalytic system has been applied to the oxidation of different primary and secondary alcohols to aldehydes and ketones under mild reaction conditions with good success. The second step, the Knoevenagel condensation of the obtained DFF with malononitrile or ethyl cyanoacetate, was performed taking advantage of the basicity of the reaction medium. es_ES
dc.description.sponsorship The Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo Program), the Severo Ochoa Program and the EU-Japan Project NOVACAM are gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cy00463j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rapeyko, A.; Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2017). Polymers from biomass: one pot two-step synthesis of furilydenepropanenitrile derivatives with MIL-100(Fe) catalyst. Catalysis Science & Technology. 7(14):3008-3016. https://doi.org/10.1039/c7cy00463j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c7cy00463j es_ES
dc.description.upvformatpinicio 3008 es_ES
dc.description.upvformatpfin 3016 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\355720 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d es_ES
dc.description.references Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b es_ES
dc.description.references Amarasekara, A. S., Green, D., & Williams, L. D. (2009). Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran–urea resin. European Polymer Journal, 45(2), 595-598. doi:10.1016/j.eurpolymj.2008.11.012 es_ES
dc.description.references Hopkins, K. T., Wilson, W. D., Bender, B. C., McCurdy, D. R., Hall, J. E., Tidwell, R. R., … Boykin, D. W. (1998). Extended Aromatic Furan Amidino Derivatives as Anti-Pneumocystis cariniiAgents. Journal of Medicinal Chemistry, 41(20), 3872-3878. doi:10.1021/jm980230c es_ES
dc.description.references Del Poeta, M., Schell, W. A., Dykstra, C. C., Jones, S., Tidwell, R. R., Czarny, A., … Perfect, J. R. (1998). Structure-In Vitro Activity Relationships of Pentamidine Analogues and Dication-Substituted Bis-Benzimidazoles as New Antifungal Agents. Antimicrobial Agents and Chemotherapy, 42(10), 2495-2502. doi:10.1128/aac.42.10.2495 es_ES
dc.description.references Richter, D. T., & Lash, T. D. (1999). Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the ‘4+1’ synthesis of sapphyrins. Tetrahedron Letters, 40(37), 6735-6738. doi:10.1016/s0040-4039(99)01352-0 es_ES
dc.description.references Shimo, T., Ueda, S., Suishu, T., & Somekawa, K. (1995). Intramolecular photocycloadditions of 6,6′-dimethyl-4,4′-polymethylenedioxy-di-2-pyrones. Journal of Heterocyclic Chemistry, 32(3), 727-730. doi:10.1002/jhet.5570320304 es_ES
dc.description.references Lichtenthaler, F. W. (2002). UnsaturatedO- andN-Heterocycles from Carbohydrate Feedstocks. Accounts of Chemical Research, 35(9), 728-737. doi:10.1021/ar010071i es_ES
dc.description.references Amarasekara, A. S., Green, D., & McMillan, E. (2008). Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)–salen catalysts. Catalysis Communications, 9(2), 286-288. doi:10.1016/j.catcom.2007.06.021 es_ES
dc.description.references Partenheimer, W., & Grushin, V. V. (2001). Synthesis of 2,5-Diformylfuran and Furan-2,5-Dicarboxylic Acid by Catalytic Air-Oxidation of 5-Hydroxymethylfurfural. Unexpectedly Selective Aerobic Oxidation of Benzyl Alcohol to Benzaldehyde with Metal/Bromide Catalysts. Advanced Synthesis & Catalysis, 343(1), 102-111. doi:10.1002/1615-4169(20010129)343:1<102::aid-adsc102>3.0.co;2-q es_ES
dc.description.references Takagaki, A., Takahashi, M., Nishimura, S., & Ebitani, K. (2011). One-Pot Synthesis of 2,5-Diformylfuran from Carbohydrate Derivatives by Sulfonated Resin and Hydrotalcite-Supported Ruthenium Catalysts. ACS Catalysis, 1(11), 1562-1565. doi:10.1021/cs200456t es_ES
dc.description.references Nie, J., Xie, J., & Liu, H. (2013). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. Journal of Catalysis, 301, 83-91. doi:10.1016/j.jcat.2013.01.007 es_ES
dc.description.references Carlini, C., Patrono, P., Galletti, A. M. R., Sbrana, G., & Zima, V. (2005). Selective oxidation of 5-hydroxymethyl-2-furaldehyde to furan-2,5-dicarboxaldehyde by catalytic systems based on vanadyl phosphate. Applied Catalysis A: General, 289(2), 197-204. doi:10.1016/j.apcata.2005.05.006 es_ES
dc.description.references Navarro, O. C., Canós, A. C., & Chornet, S. I. (2009). Chemicals from Biomass: Aerobic Oxidation of 5-Hydroxymethyl-2-Furaldehyde into Diformylfurane Catalyzed by Immobilized Vanadyl-Pyridine Complexes on Polymeric and Organofunctionalized Mesoporous Supports. Topics in Catalysis, 52(3), 304-314. doi:10.1007/s11244-008-9153-5 es_ES
dc.description.references Sádaba, I., Gorbanev, Y. Y., Kegnaes, S., Putluru, S. S. R., Berg, R. W., & Riisager, A. (2012). Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem, 5(1), 284-293. doi:10.1002/cctc.201200482 es_ES
dc.description.references Yadav, G. D., & Sharma, R. V. (2014). Biomass derived chemicals: Environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst. Applied Catalysis B: Environmental, 147, 293-301. doi:10.1016/j.apcatb.2013.09.004 es_ES
dc.description.references Fang, R., Luque, R., & Li, Y. (2016). Selective aerobic oxidation of biomass-derived HMF to 2,5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chemistry, 18(10), 3152-3157. doi:10.1039/c5gc03051j es_ES
dc.description.references Ben-Daniel, R., Alsters, P., & Neumann, R. (2001). Selective Aerobic Oxidation of Alcohols with a Combination of a Polyoxometalate and Nitroxyl Radical as Catalysts. The Journal of Organic Chemistry, 66(25), 8650-8653. doi:10.1021/jo0105843 es_ES
dc.description.references Ansari, I. A., & Gree, R. (2002). TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6]. Organic Letters, 4(9), 1507-1509. doi:10.1021/ol025721c es_ES
dc.description.references Gamez, P., Arends, I. W. C. E., Reedijk, J., & Sheldon, R. A. (2003). Copper(ii)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chemical Communications, (19), 2414. doi:10.1039/b308668b es_ES
dc.description.references Wang, N., Liu, R., Chen, J., & Liang, X. (2005). NaNO2-activated, iron–TEMPO catalyst system for aerobic alcohol oxidation under mild conditions. Chemical Communications, (42), 5322. doi:10.1039/b509167e es_ES
dc.description.references Yin, W., Chu, C., Lu, Q., Tao, J., Liang, X., & Liu, R. (2010). Iron Chloride/4-Acetamido-TEMPO/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes. Advanced Synthesis & Catalysis, 352(1), 113-118. doi:10.1002/adsc.200900662 es_ES
dc.description.references Ma, S., Liu, J., Li, S., Chen, B., Cheng, J., Kuang, J., … Yu, S. (2011). Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Advanced Synthesis & Catalysis, 353(6), 1005-1017. doi:10.1002/adsc.201100033 es_ES
dc.description.references Cottier, L., Descotes, G., Viollet, E., Lewkowski, J., & Skowroñski, R. (1995). Oxidation of 5-hydroxymethylfurfural and derivatives to furanaldehydes with 2,2,6,6-tetramethylpiperidine oxide radical - co-oxidant pairs. Journal of Heterocyclic Chemistry, 32(3), 927-930. doi:10.1002/jhet.5570320342 es_ES
dc.description.references Hansen, T. S., Sádaba, I., García-Suárez, E. J., & Riisager, A. (2013). Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions. Applied Catalysis A: General, 456, 44-50. doi:10.1016/j.apcata.2013.01.042 es_ES
dc.description.references Fang, C., Dai, J.-J., Xu, H.-J., Guo, Q.-X., & Fu, Y. (2015). Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air: A facile synthesis of 2,5-diformylfuran at room temperature. Chinese Chemical Letters, 26(10), 1265-1268. doi:10.1016/j.cclet.2015.07.001 es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Natarajan, S., & Mahata, P. (2009). Metal–organic framework structures – how closely are they related to classical inorganic structures? Chemical Society Reviews, 38(8), 2304. doi:10.1039/b815106g es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703 es_ES
dc.description.references Canioni, R., Roch-Marchal, C., Sécheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., … Van Tendeloo, G. (2011). Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem., 21(4), 1226-1233. doi:10.1039/c0jm02381g es_ES
dc.description.references Wang, P., Zhao, H., Sun, H., Yu, H., chen, S., & Quan, X. (2014). Porous metal–organic framework MIL-100(Fe) as an efficient catalyst for the selective catalytic reduction of NOx with NH3. RSC Adv., 4(90), 48912-48919. doi:10.1039/c4ra07028c es_ES
dc.description.references Rapeyko, A., Climent, M. J., Corma, A., Concepción, P., & Iborra, S. (2015). Postsynthesis-Treated Iron-Based Metal-Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 8(19), 3270-3282. doi:10.1002/cssc.201500695 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Hwang, Y. K., Seo, Y.-K., Corma, A., & Garcia, H. (2011). Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 40(40), 10719. doi:10.1039/c1dt10826c es_ES
dc.description.references García Márquez, A., Demessence, A., Platero-Prats, A. E., Heurtaux, D., Horcajada, P., Serre, C., … Sanchez, C. (2012). Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for Thin-Film Elaboration. European Journal of Inorganic Chemistry, 2012(32), 5165-5174. doi:10.1002/ejic.201200710 es_ES
dc.description.references Seo, Y.-K., Yoon, J. W., Lee, J. S., Lee, U.-H., Hwang, Y. K., Jun, C.-H., … Chang, J.-S. (2012). Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 157, 137-145. doi:10.1016/j.micromeso.2012.02.027 es_ES
dc.description.references Položij, M., Rubeš, M., Čejka, J., & Nachtigall, P. (2014). Catalysis by Dynamically Formed Defects in a Metal-Organic Framework Structure: Knoevenagel Reaction Catalyzed by Copper Benzene-1,3,5-tricarboxylate. ChemCatChem, 6(10), 2821-2824. doi:10.1002/cctc.201402411 es_ES
dc.description.references Morris, R. E., & Čejka, J. (2015). Exploiting chemically selective weakness in solids as a route to new porous materials. Nature Chemistry, 7(5), 381-388. doi:10.1038/nchem.2222 es_ES
dc.description.references Hong, D.-Y., Hwang, Y. K., Serre, C., Férey, G., & Chang, J.-S. (2009). Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis. Advanced Functional Materials, 19(10), 1537-1552. doi:10.1002/adfm.200801130 es_ES
dc.description.references KERESSZEGI, C., FERRI, D., MALLAT, T., & BAIKER, A. (2005). On the role of CO formation during the aerobic oxidation of alcohols on Pd/Al2O3: an in situ attenuated total reflection infrared study. Journal of Catalysis, 234(1), 64-75. doi:10.1016/j.jcat.2005.05.019 es_ES
dc.description.references Hui, Z., & Gandini, A. (1992). Polymeric schiff bases bearing furan moieties. European Polymer Journal, 28(12), 1461-1469. doi:10.1016/0014-3057(92)90135-o es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem