Mostrar el registro sencillo del ítem
dc.contributor.author | Vidal, Juan D | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.date.accessioned | 2018-10-31T11:34:10Z | |
dc.date.available | 2018-10-31T11:34:10Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1864-5631 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/111644 | |
dc.description | This is the peer reviewed version of the following article: Vidal, Juan D, Climent Olmedo, María José, Corma Canós, Avelino, Concepción Heydorn, Patricia, Iborra Chornet, Sara. (2017). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds .ChemSusChem, 10, 1, 119-128, which has been published in final form at http://doi.org/10.1002/cssc.201601333. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | |
dc.description.abstract | [EN] N-substituted 5-methyl-2-pyrrolidones were prepared in a one-pot process starting from ethyl levulinate and nitro compounds in the presence of a nanosized Pt-based catalyst. Pt supported on TiO2 nanotubes (Pt/TiO2-NT) catalyzed the synthesis of N-substituted 5-methyl-2-pyrrolidones through a cascade process involving the reduction of nitro compounds, formation of the intermediary imine, hydrogenation, and subsequent cyclization. A bifunctional metal acid system was a suitable catalyst for the process. Pt supported on TiO2 showed lower catalytic activity than Pt/TiO2-NT owing to the strong adsorption of nitro compounds during the first reaction step that poisoned the acidic sites and strongly decreased the rate of amination and cyclization. However, Pt/TiO2-NT with milder acid sites was less affected by the adsorption of nitro compounds and the full cascade process could proceed. The results indicate that the prepared Pt/TiO2-NT is a chemoselective and reusable catalyst that can be applied to the synthesis of a variety of N-substituted 5-methyl-2-pyrrolidones starting from nitro compounds with excellent yields in absence of an additional organic solvent under mild reaction conditions. | es_ES |
dc.description.sponsorship | Financial support by Consolider-Ingenio 2010 (Project Multicat), Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo Program) and Program Severo Ochoa is gratefully acknowledged. | |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemSusChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ethyl levulinate | es_ES |
dc.subject | Nitro compounds | es_ES |
dc.subject | Platinum | es_ES |
dc.subject | Pyrrolidones | es_ES |
dc.subject | Reductive amination | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cssc.201601333 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Vidal, JD.; Climent Olmedo, MJ.; Corma Canós, A.; Concepción Heydorn, P.; Iborra Chornet, S. (2017). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem. 10(1):119-128. https://doi.org/10.1002/cssc.201601333 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/cssc.201601333 | es_ES |
dc.description.upvformatpinicio | 119 | es_ES |
dc.description.upvformatpfin | 128 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.pmid | 27860418 | |
dc.relation.pasarela | S\337093 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science, 330(6008), 1222-1227. doi:10.1126/science.1194218 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b | es_ES |
dc.description.references | Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d | es_ES |
dc.description.references | Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a | es_ES |
dc.description.references | Top Value Added Chemicals from Biomass. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Vol. 1 2004 http://www.nrel.gov/docs/fy04osti/35523.pdf | es_ES |
dc.description.references | Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c | es_ES |
dc.description.references | Gürbüz, E. I., Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2011). Reactive Extraction of Levulinate Esters and Conversion to γ-Valerolactone for Production of Liquid Fuels. ChemSusChem, 4(3), 357-361. doi:10.1002/cssc.201000396 | es_ES |
dc.description.references | L. E. Manzer E. I. Du Ponte De Nemours And Company US6743819B1 2004 | es_ES |
dc.description.references | L. E. Manzer US20060247443A1 2006 | es_ES |
dc.description.references | Wei, Y., Wang, C., Jiang, X., Xue, D., Li, J., & Xiao, J. (2013). Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chemical Communications, 49(47), 5408. doi:10.1039/c3cc41661e | es_ES |
dc.description.references | Huang, Y.-B., Dai, J.-J., Deng, X.-J., Qu, Y.-C., Guo, Q.-X., & Fu, Y. (2011). Ruthenium-Catalyzed Conversion of Levulinic Acid to Pyrrolidines by Reductive Amination. ChemSusChem, 4(11), 1578-1581. doi:10.1002/cssc.201100344 | es_ES |
dc.description.references | Ortiz-Cervantes, C., Flores-Alamo, M., & García, J. J. (2016). Synthesis of pyrrolidones and quinolines from the known biomass feedstock levulinic acid and amines. Tetrahedron Letters, 57(7), 766-771. doi:10.1016/j.tetlet.2016.01.018 | es_ES |
dc.description.references | Du, X.-L., He, L., Zhao, S., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2011). Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie International Edition, 50(34), 7815-7819. doi:10.1002/anie.201100102 | es_ES |
dc.description.references | Du, X.-L., He, L., Zhao, S., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2011). Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie, 123(34), 7961-7965. doi:10.1002/ange.201100102 | es_ES |
dc.description.references | Wei, Y., Wang, C., Jiang, X., Xue, D., Liu, Z.-T., & Xiao, J. (2014). Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem., 16(3), 1093-1096. doi:10.1039/c3gc42125b | es_ES |
dc.description.references | Ledoux, A., Sandjong Kuigwa, L., Framery, E., & Andrioletti, B. (2015). A highly sustainable route to pyrrolidone derivatives – direct access to biosourced solvents. Green Chem., 17(6), 3251-3254. doi:10.1039/c5gc00417a | es_ES |
dc.description.references | L. E. Manzer E. I. Du Pont De Nemours And Company US7129362B2 2006 | es_ES |
dc.description.references | L. E. Manzer US20060247444A1 2006 | es_ES |
dc.description.references | Chieffi, G., Braun, M., & Esposito, D. (2015). Continuous Reductive Amination of Biomass-Derived Molecules over Carbonized Filter Paper-Supported FeNi Alloy. ChemSusChem, 8(21), 3590-3594. doi:10.1002/cssc.201500804 | es_ES |
dc.description.references | Touchy, A. S., Hakim Siddiki, S. M. A., Kon, K., & Shimizu, K. (2014). Heterogeneous Pt Catalysts for Reductive Amination of Levulinic Acid to Pyrrolidones. ACS Catalysis, 4(9), 3045-3050. doi:10.1021/cs500757k | es_ES |
dc.description.references | Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113 | es_ES |
dc.description.references | ChemCatChem 2016 10.1002/cctc.201600739 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 | es_ES |
dc.description.references | José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b | es_ES |
dc.description.references | Yoshida, H., Igarashi, N., Fujita, S., Panpranot, J., & Arai, M. (2014). Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-Phase Selective Hydrogenation of 3-Nitrostyrene, Nitrobenzene, and Styrene. Catalysis Letters, 145(2), 606-611. doi:10.1007/s10562-014-1404-4 | es_ES |
dc.description.references | L. E. Manzer E. I. Du Pont De Nemours And Company US6855731B2 2005 | es_ES |
dc.description.references | L. E. Manzer E. I. Du Pont De Nemours And Company US6818593B2 2004 | es_ES |
dc.description.references | Yang, X., Yu, X., Long, L., Wang, T., Ma, L., Wu, L., … Liao, S. (2014). Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: the confinement effect of TNT. Chemical Communications, 50(21), 2794. doi:10.1039/c3cc49331h | es_ES |
dc.description.references | Hsu, C.-Y., Chiu, T.-C., Shih, M.-H., Tsai, W.-J., Chen, W.-Y., & Lin, C.-H. (2010). Effect of Electron Density of Pt Catalysts Supported on Alkali Titanate Nanotubes in Cinnamaldehyde Hydrogenation. The Journal of Physical Chemistry C, 114(10), 4502-4510. doi:10.1021/jp9095198 | es_ES |
dc.description.references | Chiu, T.-C., Lee, H.-Y., Li, P.-H., Chao, J.-H., & Lin, C.-H. (2013). Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde. Nanotechnology, 24(11), 115601. doi:10.1088/0957-4484/24/11/115601 | es_ES |
dc.description.references | Zhu, B., Li, K., Wang, S., Zhang, S., Wu, S., & Huang, W. (2008). Influences of the H2PtCl6Solution’s pH on the Photocatalytic Activities of Platinum-Loaded TiO2Nanotubes. Journal of Dispersion Science and Technology, 29(10), 1408-1411. doi:10.1080/01932690802313311 | es_ES |
dc.description.references | XIAO-JING, H., BAO-LIN, Z., JIAN-XUN, D., WEI-LING, Z., SHU-RONG, W., SHOU-MIN, Z., & WEI-PING, H. (2012). THE INFLUENCE OF PLATINUM ON THE STRUCTURE AND PHOTOCATALYTIC PERFORMANCE OF HYDROGEN TITANATE NANOTUBES. Journal of the Chilean Chemical Society, 57(1), 1008-1011. doi:10.4067/s0717-97072012000100012 | es_ES |
dc.description.references | Kubo, T., Nagata, H., Takeuchi, M., Matsuoka, M., Anpo, M., & Nakahira, A. (2008). Structural evaluation and photocatalytic properties of Pt-supported titanate nanotubes. Research on Chemical Intermediates, 34(4), 339-346. doi:10.1163/156856708784040605 | es_ES |
dc.description.references | Hadjiivanov, K. I. (1998). IR study of CO and H2O coadsorption on Ptn+/TiO2 and Pt/TiO2 samples. Journal of the Chemical Society, Faraday Transactions, 94(13), 1901-1904. doi:10.1039/a801892h | es_ES |
dc.description.references | Shen, S., Wang, X., Ding, Q., Jin, S., Feng, Z., & Li, C. (2014). Effect of Pt cocatalyst in Pt/TiO2 studied by in situ FTIR of CO adsorption. Chinese Journal of Catalysis, 35(11), 1900-1906. doi:10.1016/s1872-2067(14)60172-8 | es_ES |
dc.description.references | Greenler, R. G., Burch, K. D., Kretzschmar, K., Klauser, R., Bradshaw, A. M., & Hayden, B. E. (1985). Stepped single-crystal surfaces as models for small catalyst particles. Surface Science, 152-153, 338-345. doi:10.1016/0039-6028(85)90163-3 | es_ES |
dc.description.references | Jiang, F., Zeng, L., Li, S., Liu, G., Wang, S., & Gong, J. (2014). Propane Dehydrogenation over Pt/TiO2–Al2O3 Catalysts. ACS Catalysis, 5(1), 438-447. doi:10.1021/cs501279v | es_ES |
dc.description.references | Serna, P., López-Haro, M., Calvino, J. J., & Corma, A. (2009). Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime with H2 on decorated Pt nanoparticles. Journal of Catalysis, 263(2), 328-334. doi:10.1016/j.jcat.2009.02.025 | es_ES |
dc.description.references | Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492 | es_ES |
dc.description.references | Climent, M. J., Corma, A., Iborra, S., & Martí, L. (2014). Process Intensification with Bifunctional Heterogeneous Catalysts: Selective One-Pot Synthesis of 2′-Aminochalcones. ACS Catalysis, 5(1), 157-166. doi:10.1021/cs5011713 | es_ES |
dc.description.references | Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie International Edition, 46(38), 7266-7269. doi:10.1002/anie.200700823 | es_ES |
dc.description.references | Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie, 119(38), 7404-7407. doi:10.1002/ange.200700823 | es_ES |
dc.description.references | Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959g | es_ES |
dc.description.references | Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816 | es_ES |