Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science, 330(6008), 1222-1227. doi:10.1126/science.1194218
Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
[+]
Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science, 330(6008), 1222-1227. doi:10.1126/science.1194218
Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d
Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d
Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a
Top Value Added Chemicals from Biomass. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Vol. 1 2004 http://www.nrel.gov/docs/fy04osti/35523.pdf
Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c
Gürbüz, E. I., Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2011). Reactive Extraction of Levulinate Esters and Conversion to γ-Valerolactone for Production of Liquid Fuels. ChemSusChem, 4(3), 357-361. doi:10.1002/cssc.201000396
L. E. Manzer E. I. Du Ponte De Nemours And Company US6743819B1 2004
L. E. Manzer US20060247443A1 2006
Wei, Y., Wang, C., Jiang, X., Xue, D., Li, J., & Xiao, J. (2013). Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chemical Communications, 49(47), 5408. doi:10.1039/c3cc41661e
Huang, Y.-B., Dai, J.-J., Deng, X.-J., Qu, Y.-C., Guo, Q.-X., & Fu, Y. (2011). Ruthenium-Catalyzed Conversion of Levulinic Acid to Pyrrolidines by Reductive Amination. ChemSusChem, 4(11), 1578-1581. doi:10.1002/cssc.201100344
Ortiz-Cervantes, C., Flores-Alamo, M., & García, J. J. (2016). Synthesis of pyrrolidones and quinolines from the known biomass feedstock levulinic acid and amines. Tetrahedron Letters, 57(7), 766-771. doi:10.1016/j.tetlet.2016.01.018
Du, X.-L., He, L., Zhao, S., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2011). Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie International Edition, 50(34), 7815-7819. doi:10.1002/anie.201100102
Du, X.-L., He, L., Zhao, S., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2011). Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie, 123(34), 7961-7965. doi:10.1002/ange.201100102
Wei, Y., Wang, C., Jiang, X., Xue, D., Liu, Z.-T., & Xiao, J. (2014). Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem., 16(3), 1093-1096. doi:10.1039/c3gc42125b
Ledoux, A., Sandjong Kuigwa, L., Framery, E., & Andrioletti, B. (2015). A highly sustainable route to pyrrolidone derivatives – direct access to biosourced solvents. Green Chem., 17(6), 3251-3254. doi:10.1039/c5gc00417a
L. E. Manzer E. I. Du Pont De Nemours And Company US7129362B2 2006
L. E. Manzer US20060247444A1 2006
Chieffi, G., Braun, M., & Esposito, D. (2015). Continuous Reductive Amination of Biomass-Derived Molecules over Carbonized Filter Paper-Supported FeNi Alloy. ChemSusChem, 8(21), 3590-3594. doi:10.1002/cssc.201500804
Touchy, A. S., Hakim Siddiki, S. M. A., Kon, K., & Shimizu, K. (2014). Heterogeneous Pt Catalysts for Reductive Amination of Levulinic Acid to Pyrrolidones. ACS Catalysis, 4(9), 3045-3050. doi:10.1021/cs500757k
Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113
ChemCatChem 2016 10.1002/cctc.201600739
Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084
José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807b
Yoshida, H., Igarashi, N., Fujita, S., Panpranot, J., & Arai, M. (2014). Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-Phase Selective Hydrogenation of 3-Nitrostyrene, Nitrobenzene, and Styrene. Catalysis Letters, 145(2), 606-611. doi:10.1007/s10562-014-1404-4
L. E. Manzer E. I. Du Pont De Nemours And Company US6855731B2 2005
L. E. Manzer E. I. Du Pont De Nemours And Company US6818593B2 2004
Yang, X., Yu, X., Long, L., Wang, T., Ma, L., Wu, L., … Liao, S. (2014). Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: the confinement effect of TNT. Chemical Communications, 50(21), 2794. doi:10.1039/c3cc49331h
Hsu, C.-Y., Chiu, T.-C., Shih, M.-H., Tsai, W.-J., Chen, W.-Y., & Lin, C.-H. (2010). Effect of Electron Density of Pt Catalysts Supported on Alkali Titanate Nanotubes in Cinnamaldehyde Hydrogenation. The Journal of Physical Chemistry C, 114(10), 4502-4510. doi:10.1021/jp9095198
Chiu, T.-C., Lee, H.-Y., Li, P.-H., Chao, J.-H., & Lin, C.-H. (2013). Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde. Nanotechnology, 24(11), 115601. doi:10.1088/0957-4484/24/11/115601
Zhu, B., Li, K., Wang, S., Zhang, S., Wu, S., & Huang, W. (2008). Influences of the H2PtCl6Solution’s pH on the Photocatalytic Activities of Platinum-Loaded TiO2Nanotubes. Journal of Dispersion Science and Technology, 29(10), 1408-1411. doi:10.1080/01932690802313311
XIAO-JING, H., BAO-LIN, Z., JIAN-XUN, D., WEI-LING, Z., SHU-RONG, W., SHOU-MIN, Z., & WEI-PING, H. (2012). THE INFLUENCE OF PLATINUM ON THE STRUCTURE AND PHOTOCATALYTIC PERFORMANCE OF HYDROGEN TITANATE NANOTUBES. Journal of the Chilean Chemical Society, 57(1), 1008-1011. doi:10.4067/s0717-97072012000100012
Kubo, T., Nagata, H., Takeuchi, M., Matsuoka, M., Anpo, M., & Nakahira, A. (2008). Structural evaluation and photocatalytic properties of Pt-supported titanate nanotubes. Research on Chemical Intermediates, 34(4), 339-346. doi:10.1163/156856708784040605
Hadjiivanov, K. I. (1998). IR study of CO and H2O coadsorption on Ptn+/TiO2 and Pt/TiO2 samples. Journal of the Chemical Society, Faraday Transactions, 94(13), 1901-1904. doi:10.1039/a801892h
Shen, S., Wang, X., Ding, Q., Jin, S., Feng, Z., & Li, C. (2014). Effect of Pt cocatalyst in Pt/TiO2 studied by in situ FTIR of CO adsorption. Chinese Journal of Catalysis, 35(11), 1900-1906. doi:10.1016/s1872-2067(14)60172-8
Greenler, R. G., Burch, K. D., Kretzschmar, K., Klauser, R., Bradshaw, A. M., & Hayden, B. E. (1985). Stepped single-crystal surfaces as models for small catalyst particles. Surface Science, 152-153, 338-345. doi:10.1016/0039-6028(85)90163-3
Jiang, F., Zeng, L., Li, S., Liu, G., Wang, S., & Gong, J. (2014). Propane Dehydrogenation over Pt/TiO2–Al2O3 Catalysts. ACS Catalysis, 5(1), 438-447. doi:10.1021/cs501279v
Serna, P., López-Haro, M., Calvino, J. J., & Corma, A. (2009). Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime with H2 on decorated Pt nanoparticles. Journal of Catalysis, 263(2), 328-334. doi:10.1016/j.jcat.2009.02.025
Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492
Climent, M. J., Corma, A., Iborra, S., & Martí, L. (2014). Process Intensification with Bifunctional Heterogeneous Catalysts: Selective One-Pot Synthesis of 2′-Aminochalcones. ACS Catalysis, 5(1), 157-166. doi:10.1021/cs5011713
Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie International Edition, 46(38), 7266-7269. doi:10.1002/anie.200700823
Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie, 119(38), 7404-7407. doi:10.1002/ange.200700823
Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959g
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816
[-]