- -

Magnetic light and forbidden photochemistry: the case of singlet oxygen

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Magnetic light and forbidden photochemistry: the case of singlet oxygen

Show full item record

Manjavacas, A.; Fenollosa Esteve, R.; Rodriguez, I.; Jiménez Molero, MC.; Miranda Alonso, MÁ.; Meseguer Rico, FJ. (2017). Magnetic light and forbidden photochemistry: the case of singlet oxygen. Journal of Materials Chemistry C. 5(45):11824-11831. https://doi.org/10.1039/c7tc04130f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/111686

Files in this item

Item Metadata

Title: Magnetic light and forbidden photochemistry: the case of singlet oxygen
Author: Manjavacas, Alejandro Fenollosa Esteve, Roberto Rodriguez, Isabelle Jiménez Molero, María Consuelo Miranda Alonso, Miguel Ángel Meseguer Rico, Francisco Javier
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Issued date:
Embargo end date: 2018-12-07
[EN] Most optical processes occurring in nature are based on the well-known selection rules for opticaltransitions between electronic levels of atoms, molecules, and solids. Since in most situations themagnetic component ...[+]
Copyrigths: Reserva de todos los derechos
Journal of Materials Chemistry C. (issn: 2050-7526 )
DOI: 10.1039/c7tc04130f
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c7tc04130f
Project ID:
A. M. acknowledge support from U. S. National Science Foundation (Grant ECCS-1710697). The authors acknowledge the financial support from the following projects: CTQ2014-61671-EXP, MAT2015-69669-P, and PrometeoII/2017/026. ...[+]
Type: Artículo


N. Turro ; V.Ramamurthy and J.Scaiano , Principles of Molecular Photochemistry: An Introduction , University Science Books , 2009

Barron, L. D., & Gray, C. G. (1973). The multipole interaction Hamiltonian for time dependent fields. Journal of Physics A: Mathematical, Nuclear and General, 6(1), 59-61. doi:10.1088/0305-4470/6/1/006

D. Craig and T.Thirunamachandran , Molecular Quantum Electrodynamics: An Introduction to Radiation-molecule Interactions , Dover Books on Chemistry Series, Dover Publications , 1984 [+]
N. Turro ; V.Ramamurthy and J.Scaiano , Principles of Molecular Photochemistry: An Introduction , University Science Books , 2009

Barron, L. D., & Gray, C. G. (1973). The multipole interaction Hamiltonian for time dependent fields. Journal of Physics A: Mathematical, Nuclear and General, 6(1), 59-61. doi:10.1088/0305-4470/6/1/006

D. Craig and T.Thirunamachandran , Molecular Quantum Electrodynamics: An Introduction to Radiation-molecule Interactions , Dover Books on Chemistry Series, Dover Publications , 1984

S. A. Maier , Plasmonics: Fundamentals and Applications , Springer , New York , 2007

Halas, N. J., Lal, S., Chang, W.-S., Link, S., & Nordlander, P. (2011). Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 111(6), 3913-3961. doi:10.1021/cr200061k

Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. (1999). Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical Reviews, 99(10), 2957-2976. doi:10.1021/cr980133r

Zhang, S., Bao, K., Halas, N. J., Xu, H., & Nordlander, P. (2011). Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters, 11(4), 1657-1663. doi:10.1021/nl200135r

Zhang, R., Zhang, Y., Dong, Z. C., Jiang, S., Zhang, C., Chen, L. G., … Hou, J. G. (2013). Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498(7452), 82-86. doi:10.1038/nature12151

Bai, W., Gan, Q., Bartoli, F., Zhang, J., Cai, L., Huang, Y., & Song, G. (2009). Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Letters, 34(23), 3725. doi:10.1364/ol.34.003725

Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629

Mubeen, S., Lee, J., Lee, W., Singh, N., Stucky, G. D., & Moskovits, M. (2014). On the Plasmonic Photovoltaic. ACS Nano, 8(6), 6066-6073. doi:10.1021/nn501379r

Kamat, P. V. (2007). Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C, 111(7), 2834-2860. doi:10.1021/jp066952u

Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911-921. doi:10.1038/nmat3151

Hou, W., & Cronin, S. B. (2012). A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 23(13), 1612-1619. doi:10.1002/adfm.201202148

Linden, S. (2004). Magnetic Response of Metamaterials at 100 Terahertz. Science, 306(5700), 1351-1353. doi:10.1126/science.1105371

Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901

Merlin, R. (2009). Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. Proceedings of the National Academy of Sciences, 106(6), 1693-1698. doi:10.1073/pnas.0808478106

Monticone, F., & Alù, A. (2014). The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters. J. Mater. Chem. C, 2(43), 9059-9072. doi:10.1039/c4tc01406e

Verre, R., Yang, Z. J., Shegai, T., & Käll, M. (2015). Optical Magnetism and Plasmonic Fano Resonances in Metal–Insulator–Metal Oligomers. Nano Letters, 15(3), 1952-1958. doi:10.1021/nl504802r

Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847

Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796

Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative-Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941-1952. doi:10.1002/adma.200600106

Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628

Enkrich, C., Pérez-Willard, F., Gerthsen, D., Zhou, J. F., Koschny, T., Soukoulis, C. M., … Linden, S. (2005). Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials. Advanced Materials, 17(21), 2547-2549. doi:10.1002/adma.200500804

Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at visible frequencies. Nature, 438(7066), 335-338. doi:10.1038/nature04242

Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., & Giessen, H. (2007). Plasmon Hybridization in Stacked Cut-Wire Metamaterials. Advanced Materials, 19(21), 3628-3632. doi:10.1002/adma.200700123

Zheludev, N. I. (2010). The Road Ahead for Metamaterials. Science, 328(5978), 582-583. doi:10.1126/science.1186756

Liz-Marzán, L. M., Giersig, M., & Mulvaney, P. (1996). Synthesis of Nanosized Gold−Silica Core−Shell Particles. Langmuir, 12(18), 4329-4335. doi:10.1021/la9601871

Liz-Marzán, L. M. (2006). Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 22(1), 32-41. doi:10.1021/la0513353

Funston, A. M., Novo, C., Davis, T. J., & Mulvaney, P. (2009). Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Letters, 9(4), 1651-1658. doi:10.1021/nl900034v

Fan, J. A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N. J., … Capasso, F. (2010). Self-Assembled Plasmonic Nanoparticle Clusters. Science, 328(5982), 1135-1138. doi:10.1126/science.1187949

Linden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., … Wegener, M. (2006). Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1097-1105. doi:10.1109/jstqe.2006.880600

Husnik, M., Klein, M. W., Feth, N., König, M., Niegemann, J., Busch, K., … Wegener, M. (2008). Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photonics, 2(10), 614-617. doi:10.1038/nphoton.2008.181

Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501

Banzer, P., Peschel, U., Quabis, S., & Leuchs, G. (2010). On the experimental investigation of the electric and magnetic response of a single nano-structure. Optics Express, 18(10), 10905. doi:10.1364/oe.18.010905

Popa, B.-I., & Cummer, S. A. (2008). Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207401

Zhao, Q., Zhou, J., Zhang, F., & Lippens, D. (2009). Mie resonance-based dielectric metamaterials. Materials Today, 12(12), 60-69. doi:10.1016/s1369-7021(09)70318-9

Shi, L., Tuzer, T. U., Fenollosa, R., & Meseguer, F. (2012). A New Dielectric Metamaterial Building Block with a Strong Magnetic Response in the Sub-1.5-Micrometer Region: Silicon Colloid Nanocavities. Advanced Materials, 24(44), 5934-5938. doi:10.1002/adma.201201987

Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J., & Luk’yanchuk, B. (2012). Magnetic light. Scientific Reports, 2(1). doi:10.1038/srep00492

Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., & Chichkov, B. N. (2012). Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Letters, 12(7), 3749-3755. doi:10.1021/nl301594s

Rolly, B., Bebey, B., Bidault, S., Stout, B., & Bonod, N. (2012). Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Physical Review B, 85(24). doi:10.1103/physrevb.85.245432

Albella, P., Poyli, M. A., Schmidt, M. K., Maier, S. A., Moreno, F., Sáenz, J. J., & Aizpurua, J. (2013). Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. The Journal of Physical Chemistry C, 117(26), 13573-13584. doi:10.1021/jp4027018

Baranov, D. G., Savelev, R. S., Li, S. V., Krasnok, A. E., & Alù, A. (2017). Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser & Photonics Reviews, 11(3), 1600268. doi:10.1002/lpor.201600268

Feng, T., Zhou, Y., Liu, D., & Li, J. (2011). Controlling magnetic dipole transition with magnetic plasmonic structures. Optics Letters, 36(12), 2369. doi:10.1364/ol.36.002369

Hein, S. M., & Giessen, H. (2013). Tailoring Magnetic Dipole Emission with Plasmonic Split-Ring Resonators. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.026803

Mivelle, M., Grosjean, T., Burr, G. W., Fischer, U. C., & Garcia-Parajo, M. F. (2015). Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas. ACS Photonics, 2(8), 1071-1076. doi:10.1021/acsphotonics.5b00128

Ofelt, G. S. (1962). Intensities of Crystal Spectra of Rare‐Earth Ions. The Journal of Chemical Physics, 37(3), 511-520. doi:10.1063/1.1701366

Judd, B. R. (1962). Optical Absorption Intensities of Rare-Earth Ions. Physical Review, 127(3), 750-761. doi:10.1103/physrev.127.750

Dodson, C. M., & Zia, R. (2012). Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths. Physical Review B, 86(12). doi:10.1103/physrevb.86.125102

Noginova, N., Barnakov, Y., Li, H., & Noginov, M. A. (2009). Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu^3+ doped polymeric film. Optics Express, 17(13), 10767. doi:10.1364/oe.17.010767

Karaveli, S., & Zia, R. (2011). Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission. Physical Review Letters, 106(19). doi:10.1103/physrevlett.106.193004

Taminiau, T. H., Karaveli, S., van Hulst, N. F., & Zia, R. (2012). Quantifying the magnetic nature of light emission. Nature Communications, 3(1). doi:10.1038/ncomms1984

Karaveli, S., Weinstein, A. J., & Zia, R. (2013). Direct Modulation of Lanthanide Emission at Sub-Lifetime Scales. Nano Letters, 13(5), 2264-2269. doi:10.1021/nl400883r

Noginova, N., Hussain, R., Noginov, M. A., Vella, J., & Urbas, A. (2013). Modification of electric and magnetic dipole emission in anisotropic plasmonic systems. Optics Express, 21(20), 23087. doi:10.1364/oe.21.023087

Hussain, R., Keene, D., Noginova, N., & Durach, M. (2014). Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal. Optics Express, 22(7), 7744. doi:10.1364/oe.22.007744

Aigouy, L., Cazé, A., Gredin, P., Mortier, M., & Carminati, R. (2014). Mapping and Quantifying Electric and Magnetic Dipole Luminescence at the Nanoscale. Physical Review Letters, 113(7). doi:10.1103/physrevlett.113.076101

Hussain, R., Kruk, S. S., Bonner, C. E., Noginov, M. A., Staude, I., Kivshar, Y. S., … Neshev, D. N. (2015). Enhancing Eu^3+ magnetic dipole emission by resonant plasmonic nanostructures. Optics Letters, 40(8), 1659. doi:10.1364/ol.40.001659

Choi, B., Iwanaga, M., Sugimoto, Y., Sakoda, K., & Miyazaki, H. T. (2016). Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions. Nano Letters, 16(8), 5191-5196. doi:10.1021/acs.nanolett.6b02200

Alvarez-Puebla, R., Liz-Marzán, L. M., & García de Abajo, F. J. (2010). Light Concentration at the Nanometer Scale. The Journal of Physical Chemistry Letters, 1(16), 2428-2434. doi:10.1021/jz100820m

Kasperczyk, M., Person, S., Ananias, D., Carlos, L. D., & Novotny, L. (2015). Excitation of Magnetic Dipole Transitions at Optical Frequencies. Physical Review Letters, 114(16). doi:10.1103/physrevlett.114.163903

Filter, R., Mühlig, S., Eichelkraut, T., Rockstuhl, C., & Lederer, F. (2012). Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas. Physical Review B, 86(3). doi:10.1103/physrevb.86.035404

Kern, A. M., & Martin, O. J. F. (2012). Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Physical Review A, 85(2). doi:10.1103/physreva.85.022501

Yannopapas, V., & Paspalakis, E. (2015). Giant enhancement of dipole-forbidden transitions via lattices of plasmonic nanoparticles. Journal of Modern Optics, 62(17), 1435-1441. doi:10.1080/09500340.2015.1045435

Alabastri, A., Yang, X., Manjavacas, A., Everitt, H. O., & Nordlander, P. (2016). Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. ACS Nano, 10(4), 4835-4846. doi:10.1021/acsnano.6b01851

Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D., & Soljačić, M. (2016). Shrinking light to allow forbidden transitions on the atomic scale. Science, 353(6296), 263-269. doi:10.1126/science.aaf6308

Schweitzer, C., & Schmidt, R. (2003). Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chemical Reviews, 103(5), 1685-1758. doi:10.1021/cr010371d

G. Herzberg , Molecular spectra and molecular structure. Vol. 1: Spectra of diatomic molecules , Van Nostrand Reinhold , New York , 1950 , 2nd edn, 1950

Ogilby, P. R. (2010). Singlet oxygen: there is indeed something new under the sun. Chemical Society Reviews, 39(8), 3181. doi:10.1039/b926014p

Ghogare, A. A., & Greer, A. (2016). Using Singlet Oxygen to Synthesize Natural Products and Drugs. Chemical Reviews, 116(17), 9994-10034. doi:10.1021/acs.chemrev.5b00726

DeRosa, M. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233-234, 351-371. doi:10.1016/s0010-8545(02)00034-6

Kautsky, H., & de Bruijn, H. (1931). Die Aufklärung der Photoluminescenztilgung fluorescierender Systeme durch Sauerstoff: Die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle durch Sensibilisierung. Naturwissenschaften, 19(52), 1043-1043. doi:10.1007/bf01516190

Foote, C. S., & Wexler, S. (1964). Olefin Oxidations with Excited Singlet Molecular Oxygen. Journal of the American Chemical Society, 86(18), 3879-3880. doi:10.1021/ja01072a060

Grosjean, T., Mivelle, M., Baida, F. I., Burr, G. W., & Fischer, U. C. (2011). Diabolo Nanoantenna for Enhancing and Confining the Magnetic Optical Field. Nano Letters, 11(3), 1009-1013. doi:10.1021/nl103817f

González-Rubio, G., González-Izquierdo, J., Bañares, L., Tardajos, G., Rivera, A., Altantzis, T., … Liz-Marzán, L. M. (2015). Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods. Nano Letters, 15(12), 8282-8288. doi:10.1021/acs.nanolett.5b03844

Toftegaard, R., Arnbjerg, J., Daasbjerg, K., Ogilby, P. R., Dmitriev, A., Sutherland, D. S., & Poulsen, L. (2008). Metal-Enhanced 1270 nm Singlet Oxygen Phosphorescence. Angewandte Chemie International Edition, 47(32), 6025-6027. doi:10.1002/anie.200800755

Wylie, J. M., & Sipe, J. E. (1984). Quantum electrodynamics near an interface. Physical Review A, 30(3), 1185-1193. doi:10.1103/physreva.30.1185

Carminati, R., Greffet, J.-J., Henkel, C., & Vigoureux, J. M. (2006). Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Optics Communications, 261(2), 368-375. doi:10.1016/j.optcom.2005.12.009

L. Novotny and B.Hecht , Principles of Nano-Optics , Cambridge University Press , New York , 2006

García de Abajo, F. J., & Howie, A. (1998). Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics. Physical Review Letters, 80(23), 5180-5183. doi:10.1103/physrevlett.80.5180

García de Abajo, F. J., & Howie, A. (2002). Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Physical Review B, 65(11). doi:10.1103/physrevb.65.115418

Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370

Gao, J., Bender, C. M., & Murphy, C. J. (2003). Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir, 19(21), 9065-9070. doi:10.1021/la034919i

Scarabelli, L., Sánchez-Iglesias, A., Pérez-Juste, J., & Liz-Marzán, L. M. (2015). A «Tips and Tricks» Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters, 6(21), 4270-4279. doi:10.1021/acs.jpclett.5b02123

Chigrin, D. N., Kumar, D., Cuma, D., & von Plessen, G. (2015). Emission Quenching of Magnetic Dipole Transitions near a Metal Nanoparticle. ACS Photonics, 3(1), 27-34. doi:10.1021/acsphotonics.5b00397

Pohlkötter, A., Köhring, M., Willer, U., & Schade, W. (2010). Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy. Sensors, 10(9), 8466-8477. doi:10.3390/s100908466

Chadwick, S. J., Salah, D., Livesey, P. M., Brust, M., & Volk, M. (2016). Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles. The Journal of Physical Chemistry C, 120(19), 10647-10657. doi:10.1021/acs.jpcc.6b02005




This item appears in the following Collection(s)

Show full item record