Mostrar el registro sencillo del ítem
dc.contributor.author | Manjavacas, Alejandro | es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto | es_ES |
dc.contributor.author | Rodriguez, Isabelle | es_ES |
dc.contributor.author | Jiménez Molero, María Consuelo | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Meseguer Rico, Francisco Javier | es_ES |
dc.date.accessioned | 2018-11-01T05:32:58Z | |
dc.date.available | 2018-11-01T05:32:58Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 2050-7526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/111686 | |
dc.description.abstract | [EN] Most optical processes occurring in nature are based on the well-known selection rules for opticaltransitions between electronic levels of atoms, molecules, and solids. Since in most situations themagnetic component of light has a negligible contribution, the dipolar electric approximation isgenerally assumed. However, this traditional understanding is challenged by nanostructured materials,which interact strongly with light and produce very large enhancements of the magnetic field in theirsurroundings. Here we report on the magnetic response of different metallic nanostructures and theirinfluence on the spectroscopy of molecular oxygen, a paradigmatic example of dipole-forbidden optical transitions in photochemistry | es_ES |
dc.description.sponsorship | A. M. acknowledge support from U. S. National Science Foundation (Grant ECCS-1710697). The authors acknowledge the financial support from the following projects: CTQ2014-61671-EXP, MAT2015-69669-P, and PrometeoII/2017/026. We would also like to acknowledge the UNM Center for Advanced Research Computing (CARC) for the computational resources used in this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry C | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Magnetic light and forbidden photochemistry: the case of singlet oxygen | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c7tc04130f | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F026/ES/TRANSMISION DE ONDAS EN METAMATERIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2014-61671-EXP/ES/FOTOQUIMICA PROHIBIDA USANDO LUZ MAGNETICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-69669-P/ES/OPTOLECTRONICA EN NANOCAVIDADES DE ALTO INDICE DE REFRACCION. DEL SILICIO A LA PEROVSKITA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-12-07 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.description.bibliographicCitation | Manjavacas, A.; Fenollosa Esteve, R.; Rodriguez, I.; Jiménez Molero, MC.; Miranda Alonso, MÁ.; Meseguer Rico, FJ. (2017). Magnetic light and forbidden photochemistry: the case of singlet oxygen. Journal of Materials Chemistry C. 5(45):11824-11831. https://doi.org/10.1039/c7tc04130f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c7tc04130f | es_ES |
dc.description.upvformatpinicio | 11824 | es_ES |
dc.description.upvformatpfin | 11831 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 45 | es_ES |
dc.relation.pasarela | S\353406 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | N. Turro ; V.Ramamurthy and J.Scaiano , Principles of Molecular Photochemistry: An Introduction , University Science Books , 2009 | es_ES |
dc.description.references | Barron, L. D., & Gray, C. G. (1973). The multipole interaction Hamiltonian for time dependent fields. Journal of Physics A: Mathematical, Nuclear and General, 6(1), 59-61. doi:10.1088/0305-4470/6/1/006 | es_ES |
dc.description.references | D. Craig and T.Thirunamachandran , Molecular Quantum Electrodynamics: An Introduction to Radiation-molecule Interactions , Dover Books on Chemistry Series, Dover Publications , 1984 | es_ES |
dc.description.references | S. A. Maier , Plasmonics: Fundamentals and Applications , Springer , New York , 2007 | es_ES |
dc.description.references | Halas, N. J., Lal, S., Chang, W.-S., Link, S., & Nordlander, P. (2011). Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 111(6), 3913-3961. doi:10.1021/cr200061k | es_ES |
dc.description.references | Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. (1999). Ultrasensitive Chemical Analysis by Raman Spectroscopy. Chemical Reviews, 99(10), 2957-2976. doi:10.1021/cr980133r | es_ES |
dc.description.references | Zhang, S., Bao, K., Halas, N. J., Xu, H., & Nordlander, P. (2011). Substrate-Induced Fano Resonances of a Plasmonic Nanocube: A Route to Increased-Sensitivity Localized Surface Plasmon Resonance Sensors Revealed. Nano Letters, 11(4), 1657-1663. doi:10.1021/nl200135r | es_ES |
dc.description.references | Zhang, R., Zhang, Y., Dong, Z. C., Jiang, S., Zhang, C., Chen, L. G., … Hou, J. G. (2013). Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 498(7452), 82-86. doi:10.1038/nature12151 | es_ES |
dc.description.references | Bai, W., Gan, Q., Bartoli, F., Zhang, J., Cai, L., Huang, Y., & Song, G. (2009). Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. Optics Letters, 34(23), 3725. doi:10.1364/ol.34.003725 | es_ES |
dc.description.references | Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629 | es_ES |
dc.description.references | Mubeen, S., Lee, J., Lee, W., Singh, N., Stucky, G. D., & Moskovits, M. (2014). On the Plasmonic Photovoltaic. ACS Nano, 8(6), 6066-6073. doi:10.1021/nn501379r | es_ES |
dc.description.references | Kamat, P. V. (2007). Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. The Journal of Physical Chemistry C, 111(7), 2834-2860. doi:10.1021/jp066952u | es_ES |
dc.description.references | Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911-921. doi:10.1038/nmat3151 | es_ES |
dc.description.references | Hou, W., & Cronin, S. B. (2012). A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 23(13), 1612-1619. doi:10.1002/adfm.201202148 | es_ES |
dc.description.references | Linden, S. (2004). Magnetic Response of Metamaterials at 100 Terahertz. Science, 306(5700), 1351-1353. doi:10.1126/science.1105371 | es_ES |
dc.description.references | Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901 | es_ES |
dc.description.references | Merlin, R. (2009). Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. Proceedings of the National Academy of Sciences, 106(6), 1693-1698. doi:10.1073/pnas.0808478106 | es_ES |
dc.description.references | Monticone, F., & Alù, A. (2014). The quest for optical magnetism: from split-ring resonators to plasmonic nanoparticles and nanoclusters. J. Mater. Chem. C, 2(43), 9059-9072. doi:10.1039/c4tc01406e | es_ES |
dc.description.references | Verre, R., Yang, Z. J., Shegai, T., & Käll, M. (2015). Optical Magnetism and Plasmonic Fano Resonances in Metal–Insulator–Metal Oligomers. Nano Letters, 15(3), 1952-1958. doi:10.1021/nl504802r | es_ES |
dc.description.references | Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847 | es_ES |
dc.description.references | Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796 | es_ES |
dc.description.references | Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative-Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941-1952. doi:10.1002/adma.200600106 | es_ES |
dc.description.references | Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141 | es_ES |
dc.description.references | Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 | es_ES |
dc.description.references | Enkrich, C., Pérez-Willard, F., Gerthsen, D., Zhou, J. F., Koschny, T., Soukoulis, C. M., … Linden, S. (2005). Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials. Advanced Materials, 17(21), 2547-2549. doi:10.1002/adma.200500804 | es_ES |
dc.description.references | Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at visible frequencies. Nature, 438(7066), 335-338. doi:10.1038/nature04242 | es_ES |
dc.description.references | Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., & Giessen, H. (2007). Plasmon Hybridization in Stacked Cut-Wire Metamaterials. Advanced Materials, 19(21), 3628-3632. doi:10.1002/adma.200700123 | es_ES |
dc.description.references | Zheludev, N. I. (2010). The Road Ahead for Metamaterials. Science, 328(5978), 582-583. doi:10.1126/science.1186756 | es_ES |
dc.description.references | Liz-Marzán, L. M., Giersig, M., & Mulvaney, P. (1996). Synthesis of Nanosized Gold−Silica Core−Shell Particles. Langmuir, 12(18), 4329-4335. doi:10.1021/la9601871 | es_ES |
dc.description.references | Liz-Marzán, L. M. (2006). Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 22(1), 32-41. doi:10.1021/la0513353 | es_ES |
dc.description.references | Funston, A. M., Novo, C., Davis, T. J., & Mulvaney, P. (2009). Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries. Nano Letters, 9(4), 1651-1658. doi:10.1021/nl900034v | es_ES |
dc.description.references | Fan, J. A., Wu, C., Bao, K., Bao, J., Bardhan, R., Halas, N. J., … Capasso, F. (2010). Self-Assembled Plasmonic Nanoparticle Clusters. Science, 328(5982), 1135-1138. doi:10.1126/science.1187949 | es_ES |
dc.description.references | Linden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., … Wegener, M. (2006). Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1097-1105. doi:10.1109/jstqe.2006.880600 | es_ES |
dc.description.references | Husnik, M., Klein, M. W., Feth, N., König, M., Niegemann, J., Busch, K., … Wegener, M. (2008). Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photonics, 2(10), 614-617. doi:10.1038/nphoton.2008.181 | es_ES |
dc.description.references | Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501 | es_ES |
dc.description.references | Banzer, P., Peschel, U., Quabis, S., & Leuchs, G. (2010). On the experimental investigation of the electric and magnetic response of a single nano-structure. Optics Express, 18(10), 10905. doi:10.1364/oe.18.010905 | es_ES |
dc.description.references | Popa, B.-I., & Cummer, S. A. (2008). Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207401 | es_ES |
dc.description.references | Zhao, Q., Zhou, J., Zhang, F., & Lippens, D. (2009). Mie resonance-based dielectric metamaterials. Materials Today, 12(12), 60-69. doi:10.1016/s1369-7021(09)70318-9 | es_ES |
dc.description.references | Shi, L., Tuzer, T. U., Fenollosa, R., & Meseguer, F. (2012). A New Dielectric Metamaterial Building Block with a Strong Magnetic Response in the Sub-1.5-Micrometer Region: Silicon Colloid Nanocavities. Advanced Materials, 24(44), 5934-5938. doi:10.1002/adma.201201987 | es_ES |
dc.description.references | Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J., & Luk’yanchuk, B. (2012). Magnetic light. Scientific Reports, 2(1). doi:10.1038/srep00492 | es_ES |
dc.description.references | Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., & Chichkov, B. N. (2012). Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Letters, 12(7), 3749-3755. doi:10.1021/nl301594s | es_ES |
dc.description.references | Rolly, B., Bebey, B., Bidault, S., Stout, B., & Bonod, N. (2012). Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Physical Review B, 85(24). doi:10.1103/physrevb.85.245432 | es_ES |
dc.description.references | Albella, P., Poyli, M. A., Schmidt, M. K., Maier, S. A., Moreno, F., Sáenz, J. J., & Aizpurua, J. (2013). Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers. The Journal of Physical Chemistry C, 117(26), 13573-13584. doi:10.1021/jp4027018 | es_ES |
dc.description.references | Baranov, D. G., Savelev, R. S., Li, S. V., Krasnok, A. E., & Alù, A. (2017). Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser & Photonics Reviews, 11(3), 1600268. doi:10.1002/lpor.201600268 | es_ES |
dc.description.references | Feng, T., Zhou, Y., Liu, D., & Li, J. (2011). Controlling magnetic dipole transition with magnetic plasmonic structures. Optics Letters, 36(12), 2369. doi:10.1364/ol.36.002369 | es_ES |
dc.description.references | Hein, S. M., & Giessen, H. (2013). Tailoring Magnetic Dipole Emission with Plasmonic Split-Ring Resonators. Physical Review Letters, 111(2). doi:10.1103/physrevlett.111.026803 | es_ES |
dc.description.references | Mivelle, M., Grosjean, T., Burr, G. W., Fischer, U. C., & Garcia-Parajo, M. F. (2015). Strong Modification of Magnetic Dipole Emission through Diabolo Nanoantennas. ACS Photonics, 2(8), 1071-1076. doi:10.1021/acsphotonics.5b00128 | es_ES |
dc.description.references | Ofelt, G. S. (1962). Intensities of Crystal Spectra of Rare‐Earth Ions. The Journal of Chemical Physics, 37(3), 511-520. doi:10.1063/1.1701366 | es_ES |
dc.description.references | Judd, B. R. (1962). Optical Absorption Intensities of Rare-Earth Ions. Physical Review, 127(3), 750-761. doi:10.1103/physrev.127.750 | es_ES |
dc.description.references | Dodson, C. M., & Zia, R. (2012). Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths. Physical Review B, 86(12). doi:10.1103/physrevb.86.125102 | es_ES |
dc.description.references | Noginova, N., Barnakov, Y., Li, H., & Noginov, M. A. (2009). Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu^3+ doped polymeric film. Optics Express, 17(13), 10767. doi:10.1364/oe.17.010767 | es_ES |
dc.description.references | Karaveli, S., & Zia, R. (2011). Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission. Physical Review Letters, 106(19). doi:10.1103/physrevlett.106.193004 | es_ES |
dc.description.references | Taminiau, T. H., Karaveli, S., van Hulst, N. F., & Zia, R. (2012). Quantifying the magnetic nature of light emission. Nature Communications, 3(1). doi:10.1038/ncomms1984 | es_ES |
dc.description.references | Karaveli, S., Weinstein, A. J., & Zia, R. (2013). Direct Modulation of Lanthanide Emission at Sub-Lifetime Scales. Nano Letters, 13(5), 2264-2269. doi:10.1021/nl400883r | es_ES |
dc.description.references | Noginova, N., Hussain, R., Noginov, M. A., Vella, J., & Urbas, A. (2013). Modification of electric and magnetic dipole emission in anisotropic plasmonic systems. Optics Express, 21(20), 23087. doi:10.1364/oe.21.023087 | es_ES |
dc.description.references | Hussain, R., Keene, D., Noginova, N., & Durach, M. (2014). Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal. Optics Express, 22(7), 7744. doi:10.1364/oe.22.007744 | es_ES |
dc.description.references | Aigouy, L., Cazé, A., Gredin, P., Mortier, M., & Carminati, R. (2014). Mapping and Quantifying Electric and Magnetic Dipole Luminescence at the Nanoscale. Physical Review Letters, 113(7). doi:10.1103/physrevlett.113.076101 | es_ES |
dc.description.references | Hussain, R., Kruk, S. S., Bonner, C. E., Noginov, M. A., Staude, I., Kivshar, Y. S., … Neshev, D. N. (2015). Enhancing Eu^3+ magnetic dipole emission by resonant plasmonic nanostructures. Optics Letters, 40(8), 1659. doi:10.1364/ol.40.001659 | es_ES |
dc.description.references | Choi, B., Iwanaga, M., Sugimoto, Y., Sakoda, K., & Miyazaki, H. T. (2016). Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions. Nano Letters, 16(8), 5191-5196. doi:10.1021/acs.nanolett.6b02200 | es_ES |
dc.description.references | Alvarez-Puebla, R., Liz-Marzán, L. M., & García de Abajo, F. J. (2010). Light Concentration at the Nanometer Scale. The Journal of Physical Chemistry Letters, 1(16), 2428-2434. doi:10.1021/jz100820m | es_ES |
dc.description.references | Kasperczyk, M., Person, S., Ananias, D., Carlos, L. D., & Novotny, L. (2015). Excitation of Magnetic Dipole Transitions at Optical Frequencies. Physical Review Letters, 114(16). doi:10.1103/physrevlett.114.163903 | es_ES |
dc.description.references | Filter, R., Mühlig, S., Eichelkraut, T., Rockstuhl, C., & Lederer, F. (2012). Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas. Physical Review B, 86(3). doi:10.1103/physrevb.86.035404 | es_ES |
dc.description.references | Kern, A. M., & Martin, O. J. F. (2012). Strong enhancement of forbidden atomic transitions using plasmonic nanostructures. Physical Review A, 85(2). doi:10.1103/physreva.85.022501 | es_ES |
dc.description.references | Yannopapas, V., & Paspalakis, E. (2015). Giant enhancement of dipole-forbidden transitions via lattices of plasmonic nanoparticles. Journal of Modern Optics, 62(17), 1435-1441. doi:10.1080/09500340.2015.1045435 | es_ES |
dc.description.references | Alabastri, A., Yang, X., Manjavacas, A., Everitt, H. O., & Nordlander, P. (2016). Extraordinary Light-Induced Local Angular Momentum near Metallic Nanoparticles. ACS Nano, 10(4), 4835-4846. doi:10.1021/acsnano.6b01851 | es_ES |
dc.description.references | Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D., & Soljačić, M. (2016). Shrinking light to allow forbidden transitions on the atomic scale. Science, 353(6296), 263-269. doi:10.1126/science.aaf6308 | es_ES |
dc.description.references | Schweitzer, C., & Schmidt, R. (2003). Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chemical Reviews, 103(5), 1685-1758. doi:10.1021/cr010371d | es_ES |
dc.description.references | G. Herzberg , Molecular spectra and molecular structure. Vol. 1: Spectra of diatomic molecules , Van Nostrand Reinhold , New York , 1950 , 2nd edn, 1950 | es_ES |
dc.description.references | Ogilby, P. R. (2010). Singlet oxygen: there is indeed something new under the sun. Chemical Society Reviews, 39(8), 3181. doi:10.1039/b926014p | es_ES |
dc.description.references | Ghogare, A. A., & Greer, A. (2016). Using Singlet Oxygen to Synthesize Natural Products and Drugs. Chemical Reviews, 116(17), 9994-10034. doi:10.1021/acs.chemrev.5b00726 | es_ES |
dc.description.references | DeRosa, M. (2002). Photosensitized singlet oxygen and its applications. Coordination Chemistry Reviews, 233-234, 351-371. doi:10.1016/s0010-8545(02)00034-6 | es_ES |
dc.description.references | Kautsky, H., & de Bruijn, H. (1931). Die Aufklärung der Photoluminescenztilgung fluorescierender Systeme durch Sauerstoff: Die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle durch Sensibilisierung. Naturwissenschaften, 19(52), 1043-1043. doi:10.1007/bf01516190 | es_ES |
dc.description.references | Foote, C. S., & Wexler, S. (1964). Olefin Oxidations with Excited Singlet Molecular Oxygen. Journal of the American Chemical Society, 86(18), 3879-3880. doi:10.1021/ja01072a060 | es_ES |
dc.description.references | Grosjean, T., Mivelle, M., Baida, F. I., Burr, G. W., & Fischer, U. C. (2011). Diabolo Nanoantenna for Enhancing and Confining the Magnetic Optical Field. Nano Letters, 11(3), 1009-1013. doi:10.1021/nl103817f | es_ES |
dc.description.references | González-Rubio, G., González-Izquierdo, J., Bañares, L., Tardajos, G., Rivera, A., Altantzis, T., … Liz-Marzán, L. M. (2015). Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods. Nano Letters, 15(12), 8282-8288. doi:10.1021/acs.nanolett.5b03844 | es_ES |
dc.description.references | Toftegaard, R., Arnbjerg, J., Daasbjerg, K., Ogilby, P. R., Dmitriev, A., Sutherland, D. S., & Poulsen, L. (2008). Metal-Enhanced 1270 nm Singlet Oxygen Phosphorescence. Angewandte Chemie International Edition, 47(32), 6025-6027. doi:10.1002/anie.200800755 | es_ES |
dc.description.references | Wylie, J. M., & Sipe, J. E. (1984). Quantum electrodynamics near an interface. Physical Review A, 30(3), 1185-1193. doi:10.1103/physreva.30.1185 | es_ES |
dc.description.references | Carminati, R., Greffet, J.-J., Henkel, C., & Vigoureux, J. M. (2006). Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Optics Communications, 261(2), 368-375. doi:10.1016/j.optcom.2005.12.009 | es_ES |
dc.description.references | L. Novotny and B.Hecht , Principles of Nano-Optics , Cambridge University Press , New York , 2006 | es_ES |
dc.description.references | García de Abajo, F. J., & Howie, A. (1998). Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics. Physical Review Letters, 80(23), 5180-5183. doi:10.1103/physrevlett.80.5180 | es_ES |
dc.description.references | García de Abajo, F. J., & Howie, A. (2002). Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Physical Review B, 65(11). doi:10.1103/physrevb.65.115418 | es_ES |
dc.description.references | Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370 | es_ES |
dc.description.references | Gao, J., Bender, C. M., & Murphy, C. J. (2003). Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir, 19(21), 9065-9070. doi:10.1021/la034919i | es_ES |
dc.description.references | Scarabelli, L., Sánchez-Iglesias, A., Pérez-Juste, J., & Liz-Marzán, L. M. (2015). A «Tips and Tricks» Practical Guide to the Synthesis of Gold Nanorods. The Journal of Physical Chemistry Letters, 6(21), 4270-4279. doi:10.1021/acs.jpclett.5b02123 | es_ES |
dc.description.references | Chigrin, D. N., Kumar, D., Cuma, D., & von Plessen, G. (2015). Emission Quenching of Magnetic Dipole Transitions near a Metal Nanoparticle. ACS Photonics, 3(1), 27-34. doi:10.1021/acsphotonics.5b00397 | es_ES |
dc.description.references | Pohlkötter, A., Köhring, M., Willer, U., & Schade, W. (2010). Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy. Sensors, 10(9), 8466-8477. doi:10.3390/s100908466 | es_ES |
dc.description.references | Chadwick, S. J., Salah, D., Livesey, P. M., Brust, M., & Volk, M. (2016). Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles. The Journal of Physical Chemistry C, 120(19), 10647-10657. doi:10.1021/acs.jpcc.6b02005 | es_ES |