- -

Estimating traffic disruption patterns with volunteer geographic information

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimating traffic disruption patterns with volunteer geographic information

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bright, Jonathan es_ES
dc.contributor.author Camargo, Chico es_ES
dc.contributor.author Hale, Scott es_ES
dc.contributor.author McNeill, Graham es_ES
dc.contributor.author Raman, Sridhar es_ES
dc.date.accessioned 2018-11-05T07:24:37Z
dc.date.available 2018-11-05T07:24:37Z
dc.date.issued 2018-09-07
dc.identifier.isbn 9788490486894
dc.identifier.uri http://hdl.handle.net/10251/111828
dc.description Resumen de la comunicación es_ES
dc.description.abstract [EN] Accurate understanding and forecasting of traffic conditions is a key contemporary problem for local policymakers. Road networks are increasingly congested, yet data on usage patterns is often scarce or expensive to obtain, meaning that informed policy decision-making is difficult. This paper explores the extent to which traffic disruption can be estimated from static features of the volunteer geographic information site OpenStreetMap [OSM]. Kernel Density Estimates of OSM features are used as predictors for a linear regression of counts of traffic incidents at 6,500 separate points within the Oxfordshire road traffic network. For highly granular points of just 10m2, it is shown that more than half of variation in traffic outcomes can be explained with these static features alone. Furthermore, use of OSM’s granular point of interest data improves considerably on more aggregate categories which are typically used in studies of transportation and land use. Although the estimations are by no means perfect, they offer a good baseline model considering the data is free to obtain and easy to process. es_ES
dc.description.sponsorship This project was supported by funding from InnovateUK under grant number 52277-393176, the NERC under grant number NE/N00728X/1, and the Lloyd’s Register Foundation. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject QCA es_ES
dc.subject PLS es_ES
dc.subject SEM es_ES
dc.subject Conference es_ES
dc.subject Traffic networks es_ES
dc.subject L es_ES
dc.subject Land use es_ES
dc.subject Social media es_ES
dc.subject Open data es_ES
dc.title Estimating traffic disruption patterns with volunteer geographic information es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2018.2018.8319
dc.relation.projectID info:eu-repo/grantAgreement/Innovate UK//52277-393176/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Innovate UK//NE%2FN00728X%2F1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bright, J.; Camargo, C.; Hale, S.; Mcneill, G.; Raman, S. (2018). Estimating traffic disruption patterns with volunteer geographic information. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 252-252. https://doi.org/10.4995/CARMA2018.2018.8319 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2018 - 2nd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 12-13,2018 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2018/paper/view/8319 es_ES
dc.description.upvformatpinicio 252 es_ES
dc.description.upvformatpfin 252 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\8319 es_ES
dc.contributor.funder Innovate UK es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem