- -

Big data analytics in returns management – Are complex techniques necessary to forecast consumer returns properly?

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Big data analytics in returns management – Are complex techniques necessary to forecast consumer returns properly?

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Asdecker, Björn es_ES
dc.contributor.author Karl, David es_ES
dc.date.accessioned 2018-11-05T08:06:52Z
dc.date.available 2018-11-05T08:06:52Z
dc.date.issued 2018-09-07
dc.identifier.isbn 9788490486894
dc.identifier.uri http://hdl.handle.net/10251/111840
dc.description.abstract [EN] The more people shop online, the more consumer returns e-tailers face. In order to plan the returns management process capacity adequately, it is necessary to forecast the expected amount of returned parcels. Big data analytics provides a vast number of methods to perform such tasks. However, it should be noted that particularly small- and medium-sized e-tailers lack the capabilities and resources to employ such complex techniques. Against this background, this paper analyses the performance of several data analysis methods that differ in application complexitiy using real data from an apparel e-tailer. On the one hand, we find that –as expected– complex methods outperform simple ones. On the other hand, and from a practitioner’s perspective probably even more interesting, we also conclude that a binary logistical regression as the simplest analyzed method may already provide satisfactory results. The findings indicate that the use of big data analytics is of great value to effectively and efficiently manage consumer returns – even if not the most sophisticated state-of-the-art method is used. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject QCA es_ES
dc.subject PLS es_ES
dc.subject SEM es_ES
dc.subject Conference es_ES
dc.subject Returns management es_ES
dc.subject Product returns es_ES
dc.subject E-commerce es_ES
dc.subject Forecast model es_ES
dc.title Big data analytics in returns management – Are complex techniques necessary to forecast consumer returns properly? es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2018.2018.8303
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Asdecker, B.; Karl, D. (2018). Big data analytics in returns management – Are complex techniques necessary to forecast consumer returns properly?. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 39-46. https://doi.org/10.4995/CARMA2018.2018.8303 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2018 - 2nd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 12-13,2018 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2018/paper/view/8303 es_ES
dc.description.upvformatpinicio 39 es_ES
dc.description.upvformatpfin 46 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\8303 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem