- -

Identification of helpful and not helpful online reviews within an eWOM community using text-mining techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of helpful and not helpful online reviews within an eWOM community using text-mining techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olmedilla, Maria es_ES
dc.contributor.author Martinez-Torres, Rocio es_ES
dc.contributor.author Toral, Sergio L. es_ES
dc.date.accessioned 2018-11-08T07:58:14Z
dc.date.available 2018-11-08T07:58:14Z
dc.date.issued 2018-09-07
dc.identifier.isbn 9788490486894
dc.identifier.uri http://hdl.handle.net/10251/112096
dc.description Resumen de la comunicación es_ES
dc.description.abstract [EN] Consumers represent today a significant source of information to learn about products and services quality thanks to the proliferation of user-generated content in the form of online reviews. It is thus of paramount to understand what makes online reviews helpful to consumers as this evaluation might affect their purchase decisions. In this regard, this research has applied textmining techniques by extracting the characteristics from online reviews' texts of an eWOM community, and further utilized these characteristics to train a logistic classifier using three classes: helpful, neutral and not helpful. The aim is identifying which unique attributes determine whether an online review is helpful or not. Findings reveal that there are much more unique attributes classified as helpful than attributes classified as not helpful. Additionally, the unique attributes associated to helpful reviews exhibit more objective appraisal while those associated to not helpful reviews show more subjective appraisal. The proposed methodology can be used to predict the helpfulness of posted reviews and to obtain their unique attributes. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject QCA es_ES
dc.subject PLS es_ES
dc.subject SEM es_ES
dc.subject Conference es_ES
dc.subject Text mining es_ES
dc.subject Unique atributes es_ES
dc.subject Objective and subjective appraisal es_ES
dc.subject eWOM communities es_ES
dc.title Identification of helpful and not helpful online reviews within an eWOM community using text-mining techniques es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2018.2018.8304
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Olmedilla, M.; Martinez-Torres, R.; Toral, SL. (2018). Identification of helpful and not helpful online reviews within an eWOM community using text-mining techniques. En 2nd International Conference on Advanced Reserach Methods and Analytics (CARMA 2018). Editorial Universitat Politècnica de València. 250-250. https://doi.org/10.4995/CARMA2018.2018.8304 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2018 - 2nd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 12-13,2018 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2018/paper/view/8304 es_ES
dc.description.upvformatpinicio 250 es_ES
dc.description.upvformatpfin 250 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\8304 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem