- -

A ROC analysis-based classification method for landslide susceptibility maps

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A ROC analysis-based classification method for landslide susceptibility maps

Show full item record

Cantarino-Martí, I.; Carrión Carmona, MÁ.; Goerlich-Gisbert, F.; Martínez Ibáñez, V. (2018). A ROC analysis-based classification method for landslide susceptibility maps. Landslides. 1-18. doi:10.1007/s10346-018-1063-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/113372

Files in this item

Item Metadata

Title: A ROC analysis-based classification method for landslide susceptibility maps
Author: Cantarino-Martí, Isidro Carrión Carmona, Miguel Ángel Goerlich-Gisbert, Francisco Martínez Ibáñez, Víctor
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny
Issued date:
Abstract:
[EN] A landslide susceptibility map is a crucial tool for landuse spatial planning and management in mountainous areas. An essential issue in such maps is the determination of susceptibility thresholds. To this end, the ...[+]
Subjects: Landslide susceptibility maps , GIS , ROC analysis , Classification systems
Copyrigths: Reserva de todos los derechos
Source:
Landslides. (issn: 1612-510X )
DOI: 10.1007/s10346-018-1063-4
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10346-018-1063-4
Type: Artículo

References

Armstrong MP, Xiao N, Bennett DA (2003) Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann Assoc Am Geogr 93(3):595–623. https://doi.org/10.1111/1467-8306.9303005

Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385. https://doi.org/10.1016/S0098-3004(97)00117-9

Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010 [+]
Armstrong MP, Xiao N, Bennett DA (2003) Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann Assoc Am Geogr 93(3):595–623. https://doi.org/10.1111/1467-8306.9303005

Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385. https://doi.org/10.1016/S0098-3004(97)00117-9

Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

Baeza C, Lantada N, Amorim S (2016) Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Science 75:1318. https://doi.org/10.1007/s12665-016-6124-1

Basofi A, Fariza A, Ahsan AS, Kamal IM (2015) A comparison between natural and head/tail breaks in LSI (landslide susceptibility index) classification for landslide susceptibility mapping: a case study in Ponorogo, East Java, Indonesia. 2015 International Conference on Science in Information Technology, pp 337–342

Cantarino I (2013) Elaboración y validación de un modelo jerárquico derivado de SIOSE. Revista de Teledetección 39:5–21

Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. https://doi.org/10.1016/j.geomorph.2006.10.033

Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411

Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472

COPUT (1998) Lithology, exploitation of industrial rocks and landslide risk in the Valencian Community. Thematic Mapping Series. Department of Public Works of the Valencian Regional Government

Drummond C, Holte RC (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65(1):95–130

Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256. https://doi.org/10.1007/s00254-006-0322-1

Evans IS (1977) The selection of class intervals. Transactions of the Institute of British Geographers. Contemp Cartograph 2(1):98–124. https://doi.org/10.2307/622195

Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, Book Series: Wiley Series in Probability and Statistics. John Wiley & Sons. Print ISBN: 9780471526292. doi: https://doi.org/10.1002/0471445428

Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sens 70(5):627–633

Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. SAGE Publications, Thousand Oaks 270 pp

Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72. https://doi.org/10.1016/j.enggeo.2009.12.004

Geisser S (1998) Comparing two tests used for diagnostic or screening processes. Stat Probability Lett 40:113–119

Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41

Günther A, Reichenbach P, Malet JP, van den Eeckhaut M, Hervás J, Dashwood C, Guzzetti F (2013) Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 10:529–546. https://doi.org/10.1007/s10346-012-0349-1

Günther A, Van Den Eeckhaut M, Malet J-P, Reichenbach P, Hervás J (2014) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85

Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf 10(3):330–341. https://doi.org/10.1016/j.jag.2008.01.003

Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. https://doi.org/10.1016/j.geomorph.2006.04.007

Hervás J (2017) El inventario de movimientos de ladera de España ALISSA: Metodología y análisis preliminar. In: Alonso E, Corominas J, Hürlimann M (Eds.), Taludes 2017. Proc. IX Simposio Nacional sobre Taludes y Laderas Inestables, Santander, 27–30 June 2017. CIMNE, Barcelona, pp. 629–639

Jaedicke C, Van Den Eeckhaut M, Nadim F et al (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull Eng Geol Environ 73:325. https://doi.org/10.1007/s10064-013-0541-0

Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartograph 7:186–190

Jiang B (2013) Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution. Prof Geogr 65(3):482–494. https://doi.org/10.1080/00330124.2012.700499

Kiang MY (2003) A comparative assessment of classification methods. Decis Support Syst 35(4):441–454. https://doi.org/10.1016/S0167-9236(02)00110-0

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174

Langping L, Hengxing L, Changbao G, Yongshuang Z, Quanwen L, Yuming W (2017) A modified frequency ratio method for landslide susceptibility assessment. Landslides 14:727–741. https://doi.org/10.1007/s10346-016-0771-x

Lee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Process Landforms 32:2133–2148. https://doi.org/10.1002/esp.1517

Liu C, Frazier P, Kumar L (2007) Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ 107(4):606–616. https://doi.org/10.1016/j.rse.2006.10.010

López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F (2014) Optimal cutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw 61(8):4

Malet JP, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2013) Integrating spatial multi-criteria evaluation and expert knowledge for country-scale landslide susceptibility analysis: application to France. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin. https://doi.org/10.1007/978-3-642-31325-7_40

McGee S (2002) Simplifying likelihood ratios. J Gen Intern Med 17:647–650

Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med VIII(4):183–198

Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1

Ohlmacher G, Davis J (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343. https://doi.org/10.1016/S0013-7952(03)00069-3

Powell RL, Matzke N, de Souza C Jr, Clark M, Numata I, Hess LL, Roberts DA (2004) Sources of error accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens Environ 90(2):221–234. https://doi.org/10.1016/j.rse.2003.12.007

Saaty T (1980) The analytic hierarchy process. McGraw Hill, New York

Smits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and proposal for a cost-based approach. Int J Remote Sens 20:1461–1486

Stehman SV, Czaplewski RL (1998) Design and analysis of thematic map accuracy assessment: fundamental principles. Remote Sens Environ 64:331–344

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet J-P, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 8:357–369

Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazards. UNESCO, Paris

Zhu X (2016) GIS for environmental applications. Routledge, Abingdon, p 490

Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record