- -

A ROC analysis-based classification method for landslide susceptibility maps

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A ROC analysis-based classification method for landslide susceptibility maps

Show simple item record

Files in this item

dc.contributor.author Cantarino-Martí, Isidro es_ES
dc.contributor.author Carrión Carmona, Miguel Ángel es_ES
dc.contributor.author Goerlich-Gisbert, Francisco es_ES
dc.contributor.author Martínez Ibáñez, Víctor es_ES
dc.date.accessioned 2018-11-29T21:01:09Z
dc.date.available 2018-11-29T21:01:09Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1612-510X es_ES
dc.identifier.uri http://hdl.handle.net/10251/113372
dc.description.abstract [EN] A landslide susceptibility map is a crucial tool for landuse spatial planning and management in mountainous areas. An essential issue in such maps is the determination of susceptibility thresholds. To this end, the map is zoned into a limited number of classes. Adopting one classification system or another will not only affect the map's readability and final appearance, but most importantly, it may affect the decision-making tasks required for effective land management. The present study compares and evaluates the reliability of some of the most commonly used classification methods, applied to a susceptibility map produced for the area of La Marina (Alicante, Spain). A new classification method based on ROC analysis is proposed, which extracts all the useful information from the initial dataset (terrain characteristics and landslide inventory) and includes, for the first time, the concept of misclassification costs. This process yields a more objective differentiation of susceptibility levels that relies less on the intrinsic structure of the terrain characteristics. The results reveal a considerable difference between the classification methods used to define the most susceptible zones (in over 20% of the surface) and highlight the need to establish a standard method for producing classified susceptibility maps. The method proposed in the study is particularly notable for its consistency, stability and homogeneity, and may mark the starting point for consensus on a generalisable classification method. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Landslides es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Landslide susceptibility maps es_ES
dc.subject GIS es_ES
dc.subject ROC analysis es_ES
dc.subject Classification systems es_ES
dc.subject.classification INGENIERIA DEL TERRENO es_ES
dc.title A ROC analysis-based classification method for landslide susceptibility maps es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10346-018-1063-4 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny es_ES
dc.description.bibliographicCitation Cantarino-Martí, I.; Carrión Carmona, MÁ.; Goerlich-Gisbert, F.; Martínez Ibáñez, V. (2018). A ROC analysis-based classification method for landslide susceptibility maps. Landslides. 1-18. doi:10.1007/s10346-018-1063-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10346-018-1063-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela 372970 es_ES
dc.relation.references Armstrong MP, Xiao N, Bennett DA (2003) Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann Assoc Am Geogr 93(3):595–623. https://doi.org/10.1111/1467-8306.9303005 es_ES
dc.relation.references Atkinson P, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Comput Geosci 24(4):373–385. https://doi.org/10.1016/S0098-3004(97)00117-9 es_ES
dc.relation.references Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31. https://doi.org/10.1016/j.geomorph.2004.06.010 es_ES
dc.relation.references Baeza C, Lantada N, Amorim S (2016) Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ Earth Science 75:1318. https://doi.org/10.1007/s12665-016-6124-1 es_ES
dc.relation.references Basofi A, Fariza A, Ahsan AS, Kamal IM (2015) A comparison between natural and head/tail breaks in LSI (landslide susceptibility index) classification for landslide susceptibility mapping: a case study in Ponorogo, East Java, Indonesia. 2015 International Conference on Science in Information Technology, pp 337–342 es_ES
dc.relation.references Cantarino I (2013) Elaboración y validación de un modelo jerárquico derivado de SIOSE. Revista de Teledetección 39:5–21 es_ES
dc.relation.references Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94(3–4):353–378. https://doi.org/10.1016/j.geomorph.2006.10.033 es_ES
dc.relation.references Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411 es_ES
dc.relation.references Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472 es_ES
dc.relation.references COPUT (1998) Lithology, exploitation of industrial rocks and landslide risk in the Valencian Community. Thematic Mapping Series. Department of Public Works of the Valencian Regional Government es_ES
dc.relation.references Drummond C, Holte RC (2006) Cost curves: an improved method for visualizing classifier performance. Mach Learn 65(1):95–130 es_ES
dc.relation.references Duman TY, Can T, Gokceoglu C, Nefeslioglu HA, Sonmez H (2006) Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environ Geol 51(2):241–256. https://doi.org/10.1007/s00254-006-0322-1 es_ES
dc.relation.references Evans IS (1977) The selection of class intervals. Transactions of the Institute of British Geographers. Contemp Cartograph 2(1):98–124. https://doi.org/10.2307/622195 es_ES
dc.relation.references Fleiss JL, Levin B, Paik MC (2003) Statistical methods for rates and proportions, Book Series: Wiley Series in Probability and Statistics. John Wiley & Sons. Print ISBN: 9780471526292. doi: https://doi.org/10.1002/0471445428 es_ES
dc.relation.references Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sens 70(5):627–633 es_ES
dc.relation.references Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. SAGE Publications, Thousand Oaks 270 pp es_ES
dc.relation.references Frattini P, Crosta G, Carrara A (2010) Techniques for evaluating the performance of landslide susceptibility models. Eng Geol 111(1–4):62–72. https://doi.org/10.1016/j.enggeo.2009.12.004 es_ES
dc.relation.references Geisser S (1998) Comparing two tests used for diagnostic or screening processes. Stat Probability Lett 40:113–119 es_ES
dc.relation.references Greiner M, Pfeiffer D, Smith RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41 es_ES
dc.relation.references Günther A, Reichenbach P, Malet JP, van den Eeckhaut M, Hervás J, Dashwood C, Guzzetti F (2013) Tier-based approaches for landslide susceptibility assessment in Europe. Landslides 10:529–546. https://doi.org/10.1007/s10346-012-0349-1 es_ES
dc.relation.references Günther A, Van Den Eeckhaut M, Malet J-P, Reichenbach P, Hervás J (2014) Climate-physiographically differentiated Pan-European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational landslide information. Geomorphology 224:69–85 es_ES
dc.relation.references Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J Appl Earth Obs Geoinf 10(3):330–341. https://doi.org/10.1016/j.jag.2008.01.003 es_ES
dc.relation.references Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81(1–2):166–184. https://doi.org/10.1016/j.geomorph.2006.04.007 es_ES
dc.relation.references Hervás J (2017) El inventario de movimientos de ladera de España ALISSA: Metodología y análisis preliminar. In: Alonso E, Corominas J, Hürlimann M (Eds.), Taludes 2017. Proc. IX Simposio Nacional sobre Taludes y Laderas Inestables, Santander, 27–30 June 2017. CIMNE, Barcelona, pp. 629–639 es_ES
dc.relation.references Jaedicke C, Van Den Eeckhaut M, Nadim F et al (2014) Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull Eng Geol Environ 73:325. https://doi.org/10.1007/s10064-013-0541-0 es_ES
dc.relation.references Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartograph 7:186–190 es_ES
dc.relation.references Jiang B (2013) Head/tail breaks: a new classification scheme for data with a heavy-tailed distribution. Prof Geogr 65(3):482–494. https://doi.org/10.1080/00330124.2012.700499 es_ES
dc.relation.references Kiang MY (2003) A comparative assessment of classification methods. Decis Support Syst 35(4):441–454. https://doi.org/10.1016/S0167-9236(02)00110-0 es_ES
dc.relation.references Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174 es_ES
dc.relation.references Langping L, Hengxing L, Changbao G, Yongshuang Z, Quanwen L, Yuming W (2017) A modified frequency ratio method for landslide susceptibility assessment. Landslides 14:727–741. https://doi.org/10.1007/s10346-016-0771-x es_ES
dc.relation.references Lee S (2007) Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surf Process Landforms 32:2133–2148. https://doi.org/10.1002/esp.1517 es_ES
dc.relation.references Liu C, Frazier P, Kumar L (2007) Comparative assessment of the measures of thematic classification accuracy. Remote Sens Environ 107(4):606–616. https://doi.org/10.1016/j.rse.2006.10.010 es_ES
dc.relation.references López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F (2014) Optimal cutpoints: an R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw 61(8):4 es_ES
dc.relation.references Malet JP, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2013) Integrating spatial multi-criteria evaluation and expert knowledge for country-scale landslide susceptibility analysis: application to France. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin. https://doi.org/10.1007/978-3-642-31325-7_40 es_ES
dc.relation.references McGee S (2002) Simplifying likelihood ratios. J Gen Intern Med 17:647–650 es_ES
dc.relation.references Metz C (1978) Basic principles of ROC analysis. Semin Nucl Med VIII(4):183–198 es_ES
dc.relation.references Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. https://doi.org/10.1007/s10346-006-0036-1 es_ES
dc.relation.references Ohlmacher G, Davis J (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343. https://doi.org/10.1016/S0013-7952(03)00069-3 es_ES
dc.relation.references Powell RL, Matzke N, de Souza C Jr, Clark M, Numata I, Hess LL, Roberts DA (2004) Sources of error accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sens Environ 90(2):221–234. https://doi.org/10.1016/j.rse.2003.12.007 es_ES
dc.relation.references Saaty T (1980) The analytic hierarchy process. McGraw Hill, New York es_ES
dc.relation.references Smits PC, Dellepiane SG, Schowengerdt RA (1999) Quality assessment of image classification algorithms for land-cover mapping: a review and proposal for a cost-based approach. Int J Remote Sens 20:1461–1486 es_ES
dc.relation.references Stehman SV, Czaplewski RL (1998) Design and analysis of thematic map accuracy assessment: fundamental principles. Remote Sens Environ 64:331–344 es_ES
dc.relation.references Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293 es_ES
dc.relation.references Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet J-P, Montanarella L, Nadim F (2012) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 8:357–369 es_ES
dc.relation.references Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Natural hazards. UNESCO, Paris es_ES
dc.relation.references Zhu X (2016) GIS for environmental applications. Routledge, Abingdon, p 490 es_ES
dc.relation.references Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577 es_ES


This item appears in the following Collection(s)

Show simple item record