- -

Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones

Show simple item record

Files in this item

dc.contributor.author Menezes, S. es_ES
dc.contributor.author Artico, S. es_ES
dc.contributor.author Lima, C. es_ES
dc.contributor.author Muniz, S. es_ES
dc.contributor.author Berbel Tornero, Ana es_ES
dc.contributor.author Brilhante, O. es_ES
dc.contributor.author Grossi, M.F. es_ES
dc.contributor.author Ferrandiz Maestre, Cristina es_ES
dc.contributor.author Madueño Albi, Francisco es_ES
dc.contributor.author Alves, M. es_ES
dc.date.accessioned 2018-12-05T21:04:33Z
dc.date.available 2018-12-05T21:04:33Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2194-7953 es_ES
dc.identifier.uri http://hdl.handle.net/10251/113504
dc.description.abstract [EN] Reproductive development in cotton, including the fruit and fiber formation, is a complex process; it involves the coordinated action of gene expression regulators, and it is highly influenced by plant hormones. Several studies have reported the identification and expression of the transcription factor family MADS-box members in cotton ovules and fibers; however, their roles are still elusive during the reproductive development in cotton. In this study, we evaluated the expression profiles of five MADS-box genes (GhMADS3, GhMADS4, GhMADS5, GhMADS6 and GhMADS7) belonging to the AGAMOUS-subfamily in Gossypium hirsutum. Phylogenetic and protein sequence analyses were performed using diploid (G. arboreum, G. raimondii) and tetraploid (G. barbadense, G. hirsutum) cotton genomes, as well as the AG-subfamily members from Arabidopsis thaliana, Petunia hybrida and Antirrhinum majus. qPCR analysis showed that the AG-subfamily genes had high expression during flower and fruit development in G. hirsutum. In situ hybridization analysis also substantiates the involvement of AG-subfamily members on reproductive tissues of G. hirsutum, including ovule and ovary. The effect of plant hormones on AG-subfamily genes expression was verified in cotton fruits treated with gibberellin, auxin and brassinosteroid. All the genes were significantly regulated in response to auxin, whereas only GhMADS3, GhMADS4 and GhMADS7 genes were also regulated by brassinosteroid treatment. In addition, we have investigated the GhMADS3 and GhMADS4 overexpression effects in Arabidopsis plants. Interestingly, the transgenic plants from both cotton AG-like genes in Arabidopsis significantly altered the fruit size compared to the control plants. This alteration suggests that cotton AG-like genes might act regulating fruit formation. Our results demonstrate that members of the AG-subfamily in G. hirsutum present a conserved expression profile during flower development, but also demonstrate their expression during fruit development and in response to phytohormones. es_ES
dc.description.sponsorship We thank Durvalina Felix and Alexandre Garcez by assist in samples preparation. We are grateful Fabia Guimaraes-Dias by valuable suggestions on the Manuscript. This work was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Rio de Janeiro (FAPERJ), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) and European Community (Evolutionary Conservation of Regulatory Network Controlling Flower Development, EVOCODE). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation UE/FP7-PEOPLE-2009-IRSES es_ES
dc.relation.ispartof Plant Reproduction es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gossypium hirsutum es_ES
dc.subject MADS-box genes es_ES
dc.subject Plant hormones es_ES
dc.subject Gene expression es_ES
dc.subject Reference genes es_ES
dc.subject Reproductive development es_ES
dc.title Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00497-017-0297-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/247587/EU/Evolutionary Conservation of Regulatory Network Controlling Flower Development/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Menezes, S.; Artico, S.; Lima, C.; Muniz, S.; Berbel Tornero, A.; Brilhante, O.; Grossi, M.... (2017). Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones. Plant Reproduction. 30(1):19-39. https://doi.org/10.1007/s00497-017-0297-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00497-017-0297-y es_ES
dc.description.upvformatpinicio 19 es_ES
dc.description.upvformatpfin 39 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 1 es_ES
dc.identifier.pmid 28176007
dc.relation.pasarela S\356329 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100:4649–4654. doi: 10.1073/pnas.0630618100 es_ES
dc.description.references Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 es_ES
dc.description.references Alvarez-Buylla ER, Pelaz S, Liljegren SJ et al (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci U S A 97:5328–5333. doi: 10.1073/pnas.97.10.5328 es_ES
dc.description.references Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496 es_ES
dc.description.references Angenent GC, Franken J, Busscher M et al (1993) Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J 4:101–112 es_ES
dc.description.references Angenent GC, Franken J, Busscher M et al (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582. doi: 10.1105/tpc.7.10.1569 es_ES
dc.description.references Artico S, Nardeli SM, Brilhante O et al (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49. doi: 10.1186/1471-2229-10-49 es_ES
dc.description.references Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489. doi: 10.1016/S1055-7903(03)00207-0 es_ES
dc.description.references Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120. doi: 10.1023/A:1015061108045 es_ES
dc.description.references Bin Zhang H, Li Y, Wang B, Chee PW (2008) Recent advances in cotton genomics. Int J Plant Genomics. doi: 10.1155/2008/742304 es_ES
dc.description.references Causier B, Castillo R, Zhou J et al (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512. doi: 10.1016/j.cub.2005.07.063 es_ES
dc.description.references Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The petunia MADS Box gene FBP11 determines ovule ldentity. Plant Cell 7:1859–1868. doi: 10.1105/tpc.7.11.1859 es_ES
dc.description.references Colombo L, Franken J, Van der Krol AR et al (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715. doi: 10.1105/tpc.9.5.703 es_ES
dc.description.references Colombo M, Brambilla V, Marcheselli R et al (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev Biol 337:294–302. doi: 10.1016/j.ydbio.2009.10.043 es_ES
dc.description.references Davies B, Motte P, Keck E et al (1999) PLENA and FARINELLI: Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023–4034. doi: 10.1093/emboj/18.14.4023 es_ES
dc.description.references Dias BFO, Simões-Araújo JL, Russo CAM et al (2005) Unravelling MADS-box gene family in Eucalyptus spp.: a starting point to an understanding of their developmental role in trees. Genet Mol Biol 28:501–510. doi: 10.1590/S1415-47572005000400004 es_ES
dc.description.references Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379. doi: 10.1093/emboj/18.19.5370 es_ES
dc.description.references Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868 es_ES
dc.description.references Favaro R, Pinyopich A, Battaglia R et al (2003) MADS-Box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611. doi: 10.1105/tpc.015123 es_ES
dc.description.references Ferrándiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438. doi: 10.1126/science.289.5478.436 es_ES
dc.description.references Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:29–37. doi: 10.1093/nar/gkr367 es_ES
dc.description.references Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:222–230. doi: 10.1093/nar/gkt1223 es_ES
dc.description.references Gialvalis S, Seagull RW (2001) Plant hormones alter fiber initiation in unfertilized, cultured ovules of Gossypium hirsutum. J Cotton Sci 5:252–258 ST es_ES
dc.description.references Gramzow L, Theissen G (2010) A hitchhiker’s guide to the MADS world of plants. Genome Biol 11:214. doi: 10.1186/gb-2010-11-6-214 es_ES
dc.description.references Guan X, Lee JJ, Pang M et al (2011) Activation of arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE. doi: 10.1371/journal.pone.0021301 es_ES
dc.description.references Guénin S, Mauriat M, Pelloux J et al (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60:487–493. doi: 10.1093/jxb/ern305 es_ES
dc.description.references Guo Y, Zhu Q, Zheng S, Li M (2007) Cloning of a MADS Box Gene (GhMADS3) from cotton and analysis of Its homeotic role in transgenic tobacco. J Genet Genom 34:527–535. doi: 10.1016/S1673-8527(07)60058-7 es_ES
dc.description.references Heijmans K, Ament K, Rijpkema AS et al (2012) Redefining C and D in the petunia ABC. Plant Cell 24:2305–2317. doi: 10.1105/tpc.112.097030 es_ES
dc.description.references Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi: 10.1186/gb-2007-8-2-r19 es_ES
dc.description.references Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919 es_ES
dc.description.references Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529. doi: 10.1038/35054083 es_ES
dc.description.references Hovav R, Udall JA, Hovav E et al (2008) A majority of cotton genes are expressed in single-celled fiber. Planta 227:319–329. doi: 10.1007/s00425-007-0619-7 es_ES
dc.description.references Jin X, Fu J, Dai S et al (2013) Reference gene selection for qPCR analysis in cineraria developing flowers. Sci Hortic (Amsterdam) 153:64–70. doi: 10.1016/j.scienta.2013.01.023 es_ES
dc.description.references Kapoor M, Tsuda S, Tanaka Y et al (2002) Role of petunia pMADS3 in determination of floral organ and meristem identity, as revealed by its loss of function. Plant J 32:115–127. doi: 10.1046/j.1365-313X.2002.01402.x es_ES
dc.description.references Kater MM, Colombo L, Franken J et al (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate. Plant Cell 10:171–182. doi: 10.1105/tpc.10.2.171 es_ES
dc.description.references Kim HJ, Hinchliffe DJ, Triplett BA et al (2015) Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS ONE 10:1–21. doi: 10.1371/journal.pone.0125046 es_ES
dc.description.references Kramer EM, Jaramillo MA, Di Stilio VS (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS Subfamily of MADS Box genes in Angiosperms. Genetics 166:1011–1023. doi: 10.1534/genetics.166.2.1011 es_ES
dc.description.references Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:msw054. doi: 10.1093/molbev/msw054 es_ES
dc.description.references Langer K, Ache P, Geiger D et al (2002) Poplar potassium transporters capable of controlling K + homeostasis and K + −dependent xylogenesis. Plant J 32:997–1009. doi: 10.1046/j.1365-313X.2002.01487.x es_ES
dc.description.references Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401. doi: 10.1093/aob/mcm232 es_ES
dc.description.references Li Y, Ning H, Zhang Z et al (2011) A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation. Acta Biochim Biophys Sin (Shanghai) 43:607–617. doi: 10.1093/abbs/gmr055 es_ES
dc.description.references Li F, Fan G, Wang K et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572 es_ES
dc.description.references Lightfoot DJ, Malone KM, Timmis JN, Orford SJ (2008) Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. Mol Genet Genom 279:75–85. doi: 10.1007/s00438-007-0297-y es_ES
dc.description.references Liljegren SJ, Ditta GS, Eshed Y et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770 es_ES
dc.description.references Liu X, Zuo K, Zhang F et al (2009) Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense. J Biosci 34:941–951. doi: 10.1007/s12038-009-0108-1 es_ES
dc.description.references Liu X, Zuo KJ, Xu JT et al (2010) Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense). J Exp Bot 61:1193–1203. doi: 10.1093/jxb/erp388 es_ES
dc.description.references Mansoor S, Paterson AH (2012) Genomes for jeans: cotton genomics for engineering superior fiber. Trends Biotechnol 30:521–527. doi: 10.1016/j.tibtech.2012.06.003 es_ES
dc.description.references McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79. doi: 10.3389/fpls.2013.00079 es_ES
dc.description.references Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene agamous in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119–131 es_ES
dc.description.references Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497 es_ES
dc.description.references Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi: 10.1093/jxb/eri285 es_ES
dc.description.references Oosterhuis DM, Cothren JT (2012) Flowering and fruiting in cotton, Number Eig. The Cotton Foundation Cordova, Tennessee es_ES
dc.description.references Pabón-Mora N, Wong GK-S, Ambrose BA (2014) Evolution of fruit development genes in flowering plants. Front Plant Sci 5:1–24. doi: 10.3389/fpls.2014.00300 es_ES
dc.description.references Paterson AH, Wendel JF, Gundlach H et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427 es_ES
dc.description.references Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. doi: 10.1093/nar/30.9.e36 es_ES
dc.description.references Pinyopich A, Ditta GS, Savidge B et al (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi: 10.1038/nature01741 es_ES
dc.description.references Pontius JU, Wagner L, Schuler GD (2003) UniGene: a unified view of the transcriptome. NCBI Handb 1:1–12 es_ES
dc.description.references Puranik S, Acajjaoui S, Conn S et al (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26:3603–3615. doi: 10.1105/tpc.114.127910 es_ES
dc.description.references Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101 es_ES
dc.description.references Ritchie GL, Bednarz CW, Jost PH, Brown SM (2007) Cotton growth and development. University of Georgia Cooperative Extension Service Bulletim 1253. [A bulletim with practical information on cotton growth and development]. http://pubs.caes.uga.edu/caespubs/pubcd/B1252.htm es_ES
dc.description.references Robertson B, Bednarz C, Burmester C et al (2007) Growth and development—first 60 days. Cotton Physiology Today. Vol 13, Issue 2. National Cotton Council of Am. Memphis, TN es_ES
dc.description.references Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers, vol 132. NJ Humana Press, Totowa, pp 365–386. doi: 10.1385/1-59259-192-2:365 es_ES
dc.description.references Ruan W, Lai M (2007) Actin, a reliable marker of internal control? Clin Chim Acta 385:1–5. doi: 10.1016/j.cca.2007.07.003 es_ES
dc.description.references Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees’. Mol Biol Evol 4:406–425 es_ES
dc.description.references Seagull RW, Giavalis S (2004) Pre- and post anthesis application of exogenous hormones alters fiber production in G. hirsutum L. Cultivar MAXXA GTO. J Cotton Sci 111:105–111 es_ES
dc.description.references Sun Y, Fokar M, Asami T et al (2004) Characterization of the Brassinosteroid insensitive 1 genes of cotton. Plant Mol Biol 54:221–232. doi: 10.1023/B:PLAN.0000028788.96381.47 es_ES
dc.description.references Sun Y, Veerabomma S, Abdel-Mageed HA et al (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46:1384–1391. doi: 10.1093/pcp/pci150 es_ES
dc.description.references Thomas C, Meyer D, Wolff M et al (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52:1025–1036 es_ES
dc.description.references Tsuchimoto S, Van Der Krol AR, Chua N (1993) Ectopic expnession of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. Plant Cell 5:843–853 es_ES
dc.description.references Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. doi: 10.1093/bioinformatics/btp033 es_ES
dc.description.references Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186. doi: 10.1016/s0065-2113(02)78004-8 es_ES
dc.description.references Xiao YH, Li DM, Yin MH et al (2010) Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167:829–837. doi: 10.1016/j.jplph.2010.01.003 es_ES
dc.description.references Yang SS, Cheung F, Lee JJ et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775. doi: 10.1111/j.1365-313X.2006.02829.x es_ES
dc.description.references Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet. doi: 10.1371/journal.pgen.1004073 es_ES
dc.description.references Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064. doi: 10.1089/cmb.2005.12.1047 es_ES


This item appears in the following Collection(s)

Show simple item record