- -

Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors

Mostrar el registro completo del ítem

Ramirez Hoyos, P.; Cervera Montesinos, J.; Gómez Lozano, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafé, S. (2018). Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors. Small. 14(18). https://doi.org/10.1002/smll.201702252

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/114623

Ficheros en el ítem

Metadatos del ítem

Título: Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors
Autor: Ramirez Hoyos, Patricio Cervera Montesinos, Javier Gómez Lozano, Vicente Ali, Mubarak Nasir, Saima Ensinger, Wolfgang Mafé, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Fecha de fin de embargo: 2019-05-03
Resumen:
[EN] The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements ...[+]
Palabras clave: Energy conversion , Hybrid circuits , Iontronics , Nanofluidic diodes , Single and multipore membranes
Derechos de uso: Reserva de todos los derechos
Fuente:
Small. (issn: 1613-6810 )
DOI: 10.1002/smll.201702252
Editorial:
John Wiley & Sons
Versión del editor: http://doi.org/10.1002/smll.201702252
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/
Descripción: This is the peer reviewed version of the following article: Ramirez Hoyos, P.; Cervera Montesinos, J.; Gómez Lozano, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafé, S. (2018). Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors. Small. 14(18). doi:10.1002/smll.201702252, which has been published in final form at http://doi.org/10.1002/smll.201702252. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
P.R., J.C., V.G., and S.M. acknowledge the financial support from the Ministry of Economy and Competitiveness of Spain, (Materials Program, project No. MAT2015-65011-P), and FEDER. M.A., S.N., and W.E. acknowledge the ...[+]
Tipo: Artículo

References

Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106

Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j

Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A., & Berggren, M. (2010). Ion bipolar junction transistors. Proceedings of the National Academy of Sciences, 107(22), 9929-9932. doi:10.1073/pnas.0913911107 [+]
Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106

Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j

Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A., & Berggren, M. (2010). Ion bipolar junction transistors. Proceedings of the National Academy of Sciences, 107(22), 9929-9932. doi:10.1073/pnas.0913911107

Duan, X., Fu, T.-M., Liu, J., & Lieber, C. M. (2013). Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today, 8(4), 351-373. doi:10.1016/j.nantod.2013.05.001

Ramirez, P., Cervera, J., Ali, M., Ensinger, W., & Mafe, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 1(4), 698-705. doi:10.1002/celc.201300255

Guan, W., Li, S. X., & Reed, M. A. (2014). Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology, 25(12), 122001. doi:10.1088/0957-4484/25/12/122001

Tagliazucchi, M., & Szleifer, I. (2015). Transport mechanisms in nanopores and nanochannels: can we mimic nature? Materials Today, 18(3), 131-142. doi:10.1016/j.mattod.2014.10.020

Ramirez, P., Gomez, V., Ali, M., Ensinger, W., & Mafe, S. (2013). Net currents obtained from zero-average potentials in single amphoteric nanopores. Electrochemistry Communications, 31, 137-140. doi:10.1016/j.elecom.2013.03.026

Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Applied Physics Letters, 106(7), 073701. doi:10.1063/1.4909532

Gomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports, 5(1). doi:10.1038/srep09501

Queralt-Martín, M., García-Giménez, E., Aguilella, V. M., Ramirez, P., Mafe, S., & Alcaraz, A. (2013). Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel. Applied Physics Letters, 103(4), 043707. doi:10.1063/1.4816748

Verdia-Baguena, C., Gomez, V., Cervera, J., Ramirez, P., & Mafe, S. (2017). Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel. Physical Chemistry Chemical Physics, 19(1), 292-296. doi:10.1039/c6cp06035h

Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., Mafe, S., & Ramirez, P. (2016). Electrical network of nanofluidic diodes in electrolyte solutions: Connectivity and coupling to electronic elements. Electrochemistry Communications, 62, 29-33. doi:10.1016/j.elecom.2015.10.022

Ramirez, P., Gomez, V., Verdia-Baguena, C., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2016). Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions. Physical Chemistry Chemical Physics, 18(5), 3995-3999. doi:10.1039/c5cp07203d

Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., … Mafe, S. (2016). Voltage-controlled current loops with nanofluidic diodes electrically coupled to solid state capacitors. RSC Advances, 6(60), 54742-54746. doi:10.1039/c6ra08277g

Ramirez, P., Garcia-Morales, V., Gomez, V., Ali, M., Nasir, S., Ensinger, W., & Mafe, S. (2017). Hybrid Circuits with Nanofluidic Diodes and Load Capacitors. Physical Review Applied, 7(6). doi:10.1103/physrevapplied.7.064035

Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano Energy, 16, 375-382. doi:10.1016/j.nanoen.2015.07.013

Hou, Y., Vidu, R., & Stroeve, P. (2011). Solar Energy Storage Methods. Industrial & Engineering Chemistry Research, 50(15), 8954-8964. doi:10.1021/ie2003413

Ali, M., Ahmed, I., Ramirez, P., Nasir, S., Mafe, S., Niemeyer, C. M., & Ensinger, W. (2017). A redox-sensitive nanofluidic diode based on nicotinamide-modified asymmetric nanopores. Sensors and Actuators B: Chemical, 240, 895-902. doi:10.1016/j.snb.2016.09.061

Zhang, Y., & Schatz, G. C. (2017). Conical Nanopores for Efficient Ion Pumping and Desalination. The Journal of Physical Chemistry Letters, 8(13), 2842-2848. doi:10.1021/acs.jpclett.7b01137

Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1

Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f

Ramirez, P., Ali, M., Ensinger, W., & Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters, 101(13), 133108. doi:10.1063/1.4754845

Cervera, J., Ramirez, P., Gomez, V., Nasir, S., Ali, M., Ensinger, W., … Mafe, S. (2016). Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses. Applied Physics Letters, 108(25), 253701. doi:10.1063/1.4954764

Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811

Pérez-Mitta, G., Albesa, A. G., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2017). Bioinspired integrated nanosystems based on solid-state nanopores: «iontronic» transduction of biological, chemical and physical stimuli. Chemical Science, 8(2), 890-913. doi:10.1039/c6sc04255d

Guo, W., Cao, L., Xia, J., Nie, F.-Q., Ma, W., Xue, J., … Jiang, L. (2010). Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Advanced Functional Materials, 20(8), 1339-1344. doi:10.1002/adfm.200902312

Roseman, J. M., Lin, J., Ramakrishnan, S., Rosenstein, J. K., & Shepard, K. L. (2015). Hybrid integrated biological–solid-state system powered with adenosine triphosphate. Nature Communications, 6(1). doi:10.1038/ncomms10070

Kocer, A., Tauk, L., & Déjardin, P. (2012). Nanopore sensors: From hybrid to abiotic systems. Biosensors and Bioelectronics, 38(1), 1-10. doi:10.1016/j.bios.2012.05.013

Maglia, G., Heron, A. J., Hwang, W. L., Holden, M. A., Mikhailova, E., Li, Q., … Bayley, H. (2009). Droplet networks with incorporated protein diodes show collective properties. Nature Nanotechnology, 4(7), 437-440. doi:10.1038/nnano.2009.121

Han, J.-H., Kim, K. B., Kim, H. C., & Chung, T. D. (2009). Ionic Circuits Based on Polyelectrolyte Diodes on a Microchip. Angewandte Chemie International Edition, 48(21), 3830-3833. doi:10.1002/anie.200900045

Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119

Vlassiouk, I., & Siwy, Z. S. (2007). Nanofluidic Diode. Nano Letters, 7(3), 552-556. doi:10.1021/nl062924b

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Ramírez, P., Rapp, H.-J., Mafé, S., & Bauer, B. (1994). Bipolar membranes under forward and reverse bias conditions. Theory vs. experiment. Journal of Electroanalytical Chemistry, 375(1-2), 101-108. doi:10.1016/0022-0728(94)03379-x

Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a

Guo, W., Tian, Y., & Jiang, L. (2013). Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Accounts of Chemical Research, 46(12), 2834-2846. doi:10.1021/ar400024p

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem