Mostrar el registro sencillo del ítem
dc.contributor.author | Nguyen, Nguyen Thao | es_ES |
dc.contributor.author | Brajkovic, Vladimir | es_ES |
dc.contributor.author | Cubric-Curik, Vlatka | es_ES |
dc.contributor.author | Ristov, Strahil | es_ES |
dc.contributor.author | Veir, Zoran | es_ES |
dc.contributor.author | Szendrő, Zsolt | es_ES |
dc.contributor.author | Nagy, Istvan | es_ES |
dc.contributor.author | Curik, Ino | es_ES |
dc.date.accessioned | 2019-01-03T11:12:06Z | |
dc.date.available | 2019-01-03T11:12:06Z | |
dc.date.issued | 2018-12-27 | |
dc.identifier.issn | 1257-5011 | |
dc.identifier.uri | http://hdl.handle.net/10251/114674 | |
dc.description.abstract | [EN] The effects of mitogenome variation on economically important traits have been reported in a number of domestic animal species. In this study, the first of its kind on rabbits, we have performed the estimation of the contribution of cytoplasmic and D-loop mitochondrial DNA (mtDNA) sequence effects on the litter size and carcass traits in three Pannon rabbit breeds (Pannon Ka, Pannon Large and Pannon White). The observed effects of both estimates, coming from cytoplasmic or D-loop mtDNA variation, were negligible. The most likely explanation for the results obtained is the lack of mitogenome polymorphism in all three populations, as suggested from the analysis performed on the D-loop mtDNA sequence, here assigned to the two most frequent rabbit haplotypes. The extent of potential benefits of the introduction, or alteration, of mitogenome variation in rabbit breeding remains an open question for future research. | es_ES |
dc.description.sponsorship | This study was supported by the EFOP-3.6.1-16-2016-00007 project, the CEEPUS scholarship for the year 2016 and the Croatian Science Foundation under Project IP-11-2013_9070 (“Utilisation of the whole mitogenome in cattle breeding and conservation genetics”, http://mitotauromics.agr.hr/). This research was partly supported by the European Regional Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | World Rabbit Science | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mitochondrial DNA | es_ES |
dc.subject | Breeding value | es_ES |
dc.subject | Litter size | es_ES |
dc.subject | Carcass | es_ES |
dc.subject | Rabbit | es_ES |
dc.title | Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-01-03T10:56:32Z | |
dc.identifier.doi | 10.4995/wrs.2018.7644 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MZOS//KK.01.1.1.01.0009/HR/Advanced Methods and Technologies in Data Science and Cooperative Systems/DATACROSS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/HRZZ//IP-11-2013_9070/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//EFOP-3.6.1-16-2016-00007/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Nguyen, NT.; Brajkovic, V.; Cubric-Curik, V.; Ristov, S.; Veir, Z.; Szendrő, Z.; Nagy, I.... (2018). Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits. World Rabbit Science. 26(4):287-298. https://doi.org/10.4995/wrs.2018.7644 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/wrs.2018.7644 | es_ES |
dc.description.upvformatpinicio | 287 | es_ES |
dc.description.upvformatpfin | 298 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | |
dc.description.issue | 4 | |
dc.identifier.eissn | 1989-8886 | |
dc.contributor.funder | Croatian Science Foundation | |
dc.contributor.funder | European Commission | |
dc.description.references | Al-Saef A.M., Khalil M.H., Al-Homidan A.H., Al-Dobaib S.N., Al-Sobayil K.A., García M.L., Baselga M. 2008. Crossbreeding effects for litter and lactation traits in a Saudi project to develop new lines of rabbits suitable for hot climates. Livest. Sci., 118: 238-246. https://doi.org/10.1016/j.livsci.2008.01.025 | es_ES |
dc.description.references | Bandelt H., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 | es_ES |
dc.description.references | Bell B.R., Mcdaniel B.T., Robison O.W. 1985. Effects of cytoplasmic inheritance on production traits of dairy-cattle. J. Dairy Sci., 68: 2038-2051. https://doi.org/10.3168/jds.S0022-0302(85)81066-3 | es_ES |
dc.description.references | Boettcher P.J., Freeman A.E., Johnston S.D., Smith R.K., Beitz D.C. McDaniel B.T. 1996a. Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows. J. Dairy Sci. 79: 647-654. https://doi.org/10.3168/jds.S0022-0302(96)76410-X | es_ES |
dc.description.references | Boettcher P. J., Steverink D.W.B., Beitz D.C., Freeman A.E., McDaniel B.T. 1996b. Multiple herd evaluation of the effects of maternal lineage on yield traits of Holstein Cattle. J. Dairy Sci., 79: 655-662. https://doi.org/10.3168/jds.S0022-0302(96)76411-1 | es_ES |
dc.description.references | Boettcher P. J., Kuhn M.T., Freeman A.E. 1996c. Impacts of cytoplasmic inheritance on genetic evaluations. J. Dairy Sci., 79: 663-675. https://doi.org/10.3168/jds.S0022-0302(96)76412-3 | es_ES |
dc.description.references | Boettcher P. J., Gibson J. P. 1997. Estimation of variance of maternal lineage effects among Canadian Holsteins. J. Dairy Sci., 80: 2167-2176. https://doi.org/10.3168/jds.S0022-0302(97)76164-2 | es_ES |
dc.description.references | Čačić M., Cubric-Curik V., Ristov S., Curik, I. 2014. Computational approach to utilisation of mitochondrial DNA in the verification of complex pedigree errors. Livest. Sci., 169: 42-47. https://doi.org/10.1016/j.livsci.2014.09.009 | es_ES |
dc.description.references | Chen X., Wang D., Xiang H., Dun W., Brahi D. O. H., Yin T., Zhao X. 2017. Mitochondrial DNA T7719G in tRNA-Lys gene affects litter size in Small-tailed Han sheep. J. Anim. Sci. Biotechnol., 8: 31. https://doi.org/10.1186/s40104-017-0160-x | es_ES |
dc.description.references | Fernández A.I., Alves E., Fernández A., de Pedro E., López-García M.A., Ovilo C., Rodríguez M.C., Silió L. 2008. Mitochondrial genome polymorphisms associated with longissimus muscle composition in Iberian pigs. J Anim Sci., 86: 1283-1290. https://doi.org/10.2527/jas.2007-0568 | es_ES |
dc.description.references | Gibson J.P., Freeman A.E., Boettcher P.J. 1997. Cytoplasmic and mitochon-drial inheritance of economic traits in cattle. Livest. Prod. Sci., 47: 115-124. https://doi.org/10.1016/S0301-6226(96)00023-1 | es_ES |
dc.description.references | Groeneveld E. 1990. PEST Users' Manual. Institute of Animal Husbandry and Animal Behaviour Federal Research Centre, Neustadt, Germany. 1-80. | es_ES |
dc.description.references | Groeneveld E., Kovac M., Mielenz N. 2008. VCE User's Guide and Reference Manual. Version 6.0. Institute of Farm Animal Genetics, Neustadt, Germany. 1-125 | es_ES |
dc.description.references | Gutiérrez J.P., Goyache F., Cervantes I. 2010. ENDOG v4.8. A computer program for monitoring genetic variability of populations using pedigree information. User's Guide. Departamento de Producción Animal. Facultad de Veterinaria. Universidad Complutense de Madrid. Área de Genetica y Reproducción Animal SERIDASomió. 1-45. | es_ES |
dc.description.references | Gyovai, P., I. Nagy, Zs. Gerencsér, Zs. Matics, I. Radnai, T. Donkó, Á. Bokor, J. Farkas, Szendrő Zs. 2011. Genetic parameters for litter weight, average daily gain and thigh muscle volume measured by in vivo Computer Tomography technique in Pannon White rabbits. Livest. Sci., 144: 119-123. https://doi.org/10.1016/j.livsci.2011.11.006 | es_ES |
dc.description.references | Hanford K.J., Snowder G.D., Van Vleck L.D. 2003. Models with nuclear, cytoplasmic, and environmental effects for production traits of Columbia sheep. J. Anim. Sci., 81: 1926-1932. https://doi.org/10.2527/2003.8181926x | es_ES |
dc.description.references | Hickey J.M., Bruce, C., Whitelaw, A., Gorjanc G. 2016. Promotion of alleles by genome editing in livestock breeding programmes. J. Anim. Breed. Genet., 133: 83-84. https://doi.org/10.1111/jbg.12206 | es_ES |
dc.description.references | Hill W.G., Mulder H.A. 2010. Genetic analysis of environmental variation. Genet. Res. (Camb.), 92: 381-395. https://doi.org/10.1017/S0016672310000546 | es_ES |
dc.description.references | John J.C., Jokhi R.P., Barratt C.L. 2005. The impact of mitochondrial genetics on male infertility. Int. J. Androl., 28: 65-73. https://doi.org/10.1111/j.1365-2605.2005.00515.x | es_ES |
dc.description.references | Kennedy B.W. 1986. A further look at evidence for cytoplasmic inheritance for production traits in dairy cattle. J. Dairy. Sci., 69: 3100-3105. https://doi.org/10.3168/jds.S0022-0302(86)80773-1 | es_ES |
dc.description.references | Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Mol. Biol. Evol., 33: 1870-1874. https://doi.org/10.1093/molbev/msw054 | es_ES |
dc.description.references | Leigh, J. W. and Bryant, D. 2015. popart: full-feature software for haplotype network construction. Methods Ecol. Evo., 6: 1110-1116. https://doi.org/10.1111/2041-210X.12410 | es_ES |
dc.description.references | Li S., Aggrey S.E., Zadworny D., Fairfull W., Kuhnlein U. 1998. Evidence for a genetic variation in the mitochondrial genome affecting traits in White Leghorn chickens. J. Heredity, 89: 222-226. https://doi.org/10.1093/jhered/89.3.222 | es_ES |
dc.description.references | Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187 | es_ES |
dc.description.references | Liu C., Yang Q., Hwang S.J., Sun F., Johnson A. D., Shirihai, O., Ramachandran S., Vasan D.L, Schwartz F. 2012. Association of Genetic Variation in the Mitochondrial Genome with Blood Pressure and Metabolic Traits. Hypertension, 60: 949-956. https://doi.org/10.1161/HYPERTENSIONAHA.112.196519 | es_ES |
dc.description.references | Matics Zs., Nagy I., Gerencsér Zs., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik I., Szendrő Zs. 2014. Pannon breeding program at Kaposvár University. World Rabbit Sci. 22: 287-300. https://doi.org/10.4995/wrs.2014.1511 | es_ES |
dc.description.references | Melo-Ferreira J., Alves P.C., Freitas H., Ferrand N., Boursot P. 2009. The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Mol. Ecol., 18: 2643-2658. https://doi.org/10.1111/j.1365-294X.2009.04221.x | es_ES |
dc.description.references | Mezzadra C.A, Melucci L.M, Corva P.M., Valiente S.L., Rípoli M.V., Lirón P., Giovambattista G. 2005. Effects of cytoplasmic inheritance on preweaning traits of Hereford cattle. Genet. Mol. Biol., 28: 357-362. https://doi.org/10.1590/S1415-47572005000300003 | es_ES |
dc.description.references | Nagy I., Radnai I., Nagyné-Kiszlinger H., Farkas J., Szendrő Zs. 2011. Genetic parameters and genetic trends of reproduction traits in synthetic Pannon rabbits using repeatability and multi-trait animal models. Archiv Tierzucht, 54: 297-307. https://doi.org/10.5194/aab-54-297-2011 | es_ES |
dc.description.references | Nagy I., Gyovai P., Radnai I., Kiszlinger H., Farkas J., Szendrő Zs. 2013a. Genetic parameters, genetic trends and inbreeding depression of growth and carcass traits in Pannon terminal line rabbits. Archiv Tierzucht, 56: 191-199. https://doi.org/10.7482/0003-9438-56-018 | es_ES |
dc.description.references | Nagy I., Gorjanc G., Curik I., Farkas J., Kiszlinger H., Szendrő Zs. 2013b. The contribution of dominance and inbreeding depression in estimating variance components for litter size in Pannon White rabbits. J. Anim. Breed. Genet., 130: 303-311. https://doi.org/10.1111/jbg.12022 | es_ES |
dc.description.references | Nagy, I., Farkas, J., Curik, I., Gorjanc, G., Gyovai, P., Szendrő, Zs., 2014 - Estimation of additive and dominance variance for litter size components in rabbits. Czech J. Anim. Sci., 59: 182-189. https://doi.org/10.17221/7342-CJAS | es_ES |
dc.description.references | Pierpaoli M., Riga F., Trocchi V., Randi E. 1999. Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol. Ecol., 8: 1805-1817. https://doi.org/10.1046/j.1365-294x.1999.00766.x | es_ES |
dc.description.references | Pun A., Goyache F., Cervantes I., Gutiérrez J.P. 2012. Cytoplasmic line effects for birth weight and preweaning growth traits in the Asturiana de los Valles beef cattle breed. Livest. Sci., 143: 177-183. https://doi.org/10.1016/j.livsci.2011.09.008 | es_ES |
dc.description.references | Ristov S., Brajkovic V., Cubric-Curik V., Michieli I., Curik I. 2016. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information. Genet Sel Evol., 48: 65. https://doi.org/10.1186/s12711-016-0242-9 | es_ES |
dc.description.references | Ruiz-Pesini E., Lapeña A.C., Díez-Sánchez C., Pérez-Martos A., Montoya J., Alvarez E., Díaz M., Urriés A., Montoro L., López-Pérez M.J., Enríquez J.A. 2000. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet., 67: 682-696. https://doi.org/10.1086/303040 | es_ES |
dc.description.references | Snowder G. D., Hanford K. J., Van Vleck L. D. 2004. Comparison of models including cytoplasmic effects for traits of Rambouillet sheep. Faculty Papers and Pub. Anim. Sci., 90:159-166. https://doi.org/10.1016/j.livprodsci.2004.03.003 | es_ES |
dc.description.references | Szwaczkowski T., Bednarczyk M., Kielczewski K. 1999. Direct, maternal and cytoplasmic variance estimates of egg production traits in laying hens. J. Anim. Feed. Sci., 8: 589-598. https://doi.org/10.22358/jafs/69183/1999 | es_ES |
dc.description.references | Tsai T.S., Rajasekar S., John J.C.T. 2016. The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus). BMC Genetics, 17: 67. https://doi.org/10.1186/s12863-016-0375-4 | es_ES |
dc.description.references | Van Vleck L.D. 2000. Selection index and introduction to mixed models methods. CRC Press In., Boca Raton, Florida 33431. 19: 225-231. | es_ES |
dc.description.references | Yen N.T., Lin C.S., Ju C.C., Wang S.C., Huang M.C. 2007. Mitochondrial DNA polymorphism and determination of effects on reproductive trait in pigs. Reprod. Domest. Anim. 42: 387-92. https://doi.org/10.1111/j.1439-0531.2006.00797.x | es_ES |
dc.description.references | Yu G., Xiang H., Tian J., Yin J., Pinkert C.A., Li Q., Zhao X. 2015. Mitochondrial Haplotypes Influence Metabolic Traits in Porcine Transmitochondrial Cybrids. Sci. Rep., 19: 13118-10. https://doi.org/10.1038/srep13118 | es_ES |
dc.description.references | Wallace D. C. 1999. Mitochondrial diseases in man and mouse. Science, 283: 1482-1488. https://doi.org/10.1126/science.283.5407.1482 | es_ES |
dc.description.references | Zhao X., Wu N., Zhu Q., Gaur U., Gu T., Li D. 2015. Highaltitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Mitochondrial DNA, Early Online: 1-9. https://doi.org/10.3109/19401736.2015.1015006 | es_ES |