- -

Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits

Mostrar el registro completo del ítem

Nguyen, NT.; Brajkovic, V.; Cubric-Curik, V.; Ristov, S.; Veir, Z.; Szendrő, Z.; Nagy, I.... (2018). Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits. World Rabbit Science. 26(4):287-298. https://doi.org/10.4995/wrs.2018.7644

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/114674

Ficheros en el ítem

Metadatos del ítem

Título: Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits
Autor: Nguyen, Nguyen Thao Brajkovic, Vladimir Cubric-Curik, Vlatka Ristov, Strahil Veir, Zoran Szendrő, Zsolt Nagy, Istvan Curik, Ino
Fecha difusión:
Resumen:
[EN] The effects of mitogenome variation on economically important traits have been reported in a number of domestic animal species. In this study, the first of its kind on rabbits, we have performed the estimation of the ...[+]
Palabras clave: Mitochondrial DNA , Breeding value , Litter size , Carcass , Rabbit
Derechos de uso: Reserva de todos los derechos
Fuente:
World Rabbit Science. (issn: 1257-5011 ) (eissn: 1989-8886 )
DOI: 10.4995/wrs.2018.7644
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/wrs.2018.7644
Código del Proyecto:
info:eu-repo/grantAgreement/MZOS//KK.01.1.1.01.0009/HR/Advanced Methods and Technologies in Data Science and Cooperative Systems/DATACROSS/
info:eu-repo/grantAgreement/HRZZ//IP-11-2013_9070/
info:eu-repo/grantAgreement/EC//EFOP-3.6.1-16-2016-00007/
Agradecimientos:
This study was supported by the EFOP-3.6.1-16-2016-00007 project, the CEEPUS scholarship for the year 2016 and the Croatian Science Foundation under Project IP-11-2013_9070 (“Utilisation of the whole mitogenome in cattle ...[+]
Tipo: Artículo

References

Al-Saef A.M., Khalil M.H., Al-Homidan A.H., Al-Dobaib S.N., Al-Sobayil K.A., García M.L., Baselga M. 2008. Crossbreeding effects for litter and lactation traits in a Saudi project to develop new lines of rabbits suitable for hot climates. Livest. Sci., 118: 238-246. https://doi.org/10.1016/j.livsci.2008.01.025

Bandelt H., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

Bell B.R., Mcdaniel B.T., Robison O.W. 1985. Effects of cytoplasmic inheritance on production traits of dairy-cattle. J. Dairy Sci., 68: 2038-2051. https://doi.org/10.3168/jds.S0022-0302(85)81066-3 [+]
Al-Saef A.M., Khalil M.H., Al-Homidan A.H., Al-Dobaib S.N., Al-Sobayil K.A., García M.L., Baselga M. 2008. Crossbreeding effects for litter and lactation traits in a Saudi project to develop new lines of rabbits suitable for hot climates. Livest. Sci., 118: 238-246. https://doi.org/10.1016/j.livsci.2008.01.025

Bandelt H., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16: 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

Bell B.R., Mcdaniel B.T., Robison O.W. 1985. Effects of cytoplasmic inheritance on production traits of dairy-cattle. J. Dairy Sci., 68: 2038-2051. https://doi.org/10.3168/jds.S0022-0302(85)81066-3

Boettcher P.J., Freeman A.E., Johnston S.D., Smith R.K., Beitz D.C. McDaniel B.T. 1996a. Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows. J. Dairy Sci. 79: 647-654. https://doi.org/10.3168/jds.S0022-0302(96)76410-X

Boettcher P. J., Steverink D.W.B., Beitz D.C., Freeman A.E., McDaniel B.T. 1996b. Multiple herd evaluation of the effects of maternal lineage on yield traits of Holstein Cattle. J. Dairy Sci., 79: 655-662. https://doi.org/10.3168/jds.S0022-0302(96)76411-1

Boettcher P. J., Kuhn M.T., Freeman A.E. 1996c. Impacts of cytoplasmic inheritance on genetic evaluations. J. Dairy Sci., 79: 663-675. https://doi.org/10.3168/jds.S0022-0302(96)76412-3

Boettcher P. J., Gibson J. P. 1997. Estimation of variance of maternal lineage effects among Canadian Holsteins. J. Dairy Sci., 80: 2167-2176. https://doi.org/10.3168/jds.S0022-0302(97)76164-2

Čačić M., Cubric-Curik V., Ristov S., Curik, I. 2014. Computational approach to utilisation of mitochondrial DNA in the verification of complex pedigree errors. Livest. Sci., 169: 42-47. https://doi.org/10.1016/j.livsci.2014.09.009

Chen X., Wang D., Xiang H., Dun W., Brahi D. O. H., Yin T., Zhao X. 2017. Mitochondrial DNA T7719G in tRNA-Lys gene affects litter size in Small-tailed Han sheep. J. Anim. Sci. Biotechnol., 8: 31. https://doi.org/10.1186/s40104-017-0160-x

Fernández A.I., Alves E., Fernández A., de Pedro E., López-García M.A., Ovilo C., Rodríguez M.C., Silió L. 2008. Mitochondrial genome polymorphisms associated with longissimus muscle composition in Iberian pigs. J Anim Sci., 86: 1283-1290. https://doi.org/10.2527/jas.2007-0568

Gibson J.P., Freeman A.E., Boettcher P.J. 1997. Cytoplasmic and mitochon-drial inheritance of economic traits in cattle. Livest. Prod. Sci., 47: 115-124. https://doi.org/10.1016/S0301-6226(96)00023-1

Groeneveld E. 1990. PEST Users' Manual. Institute of Animal Husbandry and Animal Behaviour Federal Research Centre, Neustadt, Germany. 1-80.

Groeneveld E., Kovac M., Mielenz N. 2008. VCE User's Guide and Reference Manual. Version 6.0. Institute of Farm Animal Genetics, Neustadt, Germany. 1-125

Gutiérrez J.P., Goyache F., Cervantes I. 2010. ENDOG v4.8. A computer program for monitoring genetic variability of populations using pedigree information. User's Guide. Departamento de Producción Animal. Facultad de Veterinaria. Universidad Complutense de Madrid. Área de Genetica y Reproducción Animal SERIDASomió. 1-45.

Gyovai, P., I. Nagy, Zs. Gerencsér, Zs. Matics, I. Radnai, T. Donkó, Á. Bokor, J. Farkas, Szendrő Zs. 2011. Genetic parameters for litter weight, average daily gain and thigh muscle volume measured by in vivo Computer Tomography technique in Pannon White rabbits. Livest. Sci., 144: 119-123. https://doi.org/10.1016/j.livsci.2011.11.006

Hanford K.J., Snowder G.D., Van Vleck L.D. 2003. Models with nuclear, cytoplasmic, and environmental effects for production traits of Columbia sheep. J. Anim. Sci., 81: 1926-1932. https://doi.org/10.2527/2003.8181926x

Hickey J.M., Bruce, C., Whitelaw, A., Gorjanc G. 2016. Promotion of alleles by genome editing in livestock breeding programmes. J. Anim. Breed. Genet., 133: 83-84. https://doi.org/10.1111/jbg.12206

Hill W.G., Mulder H.A. 2010. Genetic analysis of environmental variation. Genet. Res. (Camb.), 92: 381-395. https://doi.org/10.1017/S0016672310000546

John J.C., Jokhi R.P., Barratt C.L. 2005. The impact of mitochondrial genetics on male infertility. Int. J. Androl., 28: 65-73. https://doi.org/10.1111/j.1365-2605.2005.00515.x

Kennedy B.W. 1986. A further look at evidence for cytoplasmic inheritance for production traits in dairy cattle. J. Dairy. Sci., 69: 3100-3105. https://doi.org/10.3168/jds.S0022-0302(86)80773-1

Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Mol. Biol. Evol., 33: 1870-1874. https://doi.org/10.1093/molbev/msw054

Leigh, J. W. and Bryant, D. 2015. popart: full-feature software for haplotype network construction. Methods Ecol. Evo., 6: 1110-1116. https://doi.org/10.1111/2041-210X.12410

Li S., Aggrey S.E., Zadworny D., Fairfull W., Kuhnlein U. 1998. Evidence for a genetic variation in the mitochondrial genome affecting traits in White Leghorn chickens. J. Heredity, 89: 222-226. https://doi.org/10.1093/jhered/89.3.222

Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187

Liu C., Yang Q., Hwang S.J., Sun F., Johnson A. D., Shirihai, O., Ramachandran S., Vasan D.L, Schwartz F. 2012. Association of Genetic Variation in the Mitochondrial Genome with Blood Pressure and Metabolic Traits. Hypertension, 60: 949-956. https://doi.org/10.1161/HYPERTENSIONAHA.112.196519

Matics Zs., Nagy I., Gerencsér Zs., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik I., Szendrő Zs. 2014. Pannon breeding program at Kaposvár University. World Rabbit Sci. 22: 287-300. https://doi.org/10.4995/wrs.2014.1511

Melo-Ferreira J., Alves P.C., Freitas H., Ferrand N., Boursot P. 2009. The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes. Mol. Ecol., 18: 2643-2658. https://doi.org/10.1111/j.1365-294X.2009.04221.x

Mezzadra C.A, Melucci L.M, Corva P.M., Valiente S.L., Rípoli M.V., Lirón P., Giovambattista G. 2005. Effects of cytoplasmic inheritance on preweaning traits of Hereford cattle. Genet. Mol. Biol., 28: 357-362. https://doi.org/10.1590/S1415-47572005000300003

Nagy I., Radnai I., Nagyné-Kiszlinger H., Farkas J., Szendrő Zs. 2011. Genetic parameters and genetic trends of reproduction traits in synthetic Pannon rabbits using repeatability and multi-trait animal models. Archiv Tierzucht, 54: 297-307. https://doi.org/10.5194/aab-54-297-2011

Nagy I., Gyovai P., Radnai I., Kiszlinger H., Farkas J., Szendrő Zs. 2013a. Genetic parameters, genetic trends and inbreeding depression of growth and carcass traits in Pannon terminal line rabbits. Archiv Tierzucht, 56: 191-199. https://doi.org/10.7482/0003-9438-56-018

Nagy I., Gorjanc G., Curik I., Farkas J., Kiszlinger H., Szendrő Zs. 2013b. The contribution of dominance and inbreeding depression in estimating variance components for litter size in Pannon White rabbits. J. Anim. Breed. Genet., 130: 303-311. https://doi.org/10.1111/jbg.12022

Nagy, I., Farkas, J., Curik, I., Gorjanc, G., Gyovai, P., Szendrő, Zs., 2014 - Estimation of additive and dominance variance for litter size components in rabbits. Czech J. Anim. Sci., 59: 182-189. https://doi.org/10.17221/7342-CJAS

Pierpaoli M., Riga F., Trocchi V., Randi E. 1999. Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol. Ecol., 8: 1805-1817. https://doi.org/10.1046/j.1365-294x.1999.00766.x

Pun A., Goyache F., Cervantes I., Gutiérrez J.P. 2012. Cytoplasmic line effects for birth weight and preweaning growth traits in the Asturiana de los Valles beef cattle breed. Livest. Sci., 143: 177-183. https://doi.org/10.1016/j.livsci.2011.09.008

Ristov S., Brajkovic V., Cubric-Curik V., Michieli I., Curik I. 2016. MaGelLAn 1.0: a software to facilitate quantitative and population genetic analysis of maternal inheritance by combination of molecular and pedigree information. Genet Sel Evol., 48: 65. https://doi.org/10.1186/s12711-016-0242-9

Ruiz-Pesini E., Lapeña A.C., Díez-Sánchez C., Pérez-Martos A., Montoya J., Alvarez E., Díaz M., Urriés A., Montoro L., López-Pérez M.J., Enríquez J.A. 2000. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet., 67: 682-696. https://doi.org/10.1086/303040

Snowder G. D., Hanford K. J., Van Vleck L. D. 2004. Comparison of models including cytoplasmic effects for traits of Rambouillet sheep. Faculty Papers and Pub. Anim. Sci., 90:159-166. https://doi.org/10.1016/j.livprodsci.2004.03.003

Szwaczkowski T., Bednarczyk M., Kielczewski K. 1999. Direct, maternal and cytoplasmic variance estimates of egg production traits in laying hens. J. Anim. Feed. Sci., 8: 589-598. https://doi.org/10.22358/jafs/69183/1999

Tsai T.S., Rajasekar S., John J.C.T. 2016. The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus). BMC Genetics, 17: 67. https://doi.org/10.1186/s12863-016-0375-4

Van Vleck L.D. 2000. Selection index and introduction to mixed models methods. CRC Press In., Boca Raton, Florida 33431. 19: 225-231.

Yen N.T., Lin C.S., Ju C.C., Wang S.C., Huang M.C. 2007. Mitochondrial DNA polymorphism and determination of effects on reproductive trait in pigs. Reprod. Domest. Anim. 42: 387-92. https://doi.org/10.1111/j.1439-0531.2006.00797.x

Yu G., Xiang H., Tian J., Yin J., Pinkert C.A., Li Q., Zhao X. 2015. Mitochondrial Haplotypes Influence Metabolic Traits in Porcine Transmitochondrial Cybrids. Sci. Rep., 19: 13118-10. https://doi.org/10.1038/srep13118

Wallace D. C. 1999. Mitochondrial diseases in man and mouse. Science, 283: 1482-1488. https://doi.org/10.1126/science.283.5407.1482

Zhao X., Wu N., Zhu Q., Gaur U., Gu T., Li D. 2015. Highaltitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Mitochondrial DNA, Early Online: 1-9. https://doi.org/10.3109/19401736.2015.1015006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem