- -

Arabic Handwritten Word Recognition based on Bernoulli Mixture HMMs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Arabic Handwritten Word Recognition based on Bernoulli Mixture HMMs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Juan Císcar, Alfonso es_ES
dc.contributor.author Alkhoury, Ihab es_ES
dc.date.accessioned 2011-09-06T15:53:26Z
dc.date.available 2011-09-06T15:53:26Z
dc.date.created 2010
dc.date.issued 2011-09-06
dc.identifier.uri http://hdl.handle.net/10251/11478
dc.description.abstract This thesis presents new approaches in off-line Arabic Handwriting Recognition based on conventional Bernoulli Hidden Markov models. Until now, the off-line handwriting recognition, in particular, the Arabic handwriting recognition is still far away form being perfect. Hidden Markov Models (HMMs) are now widely used for off-line handwriting recognition in many languages and, in particular, in Arabic. As in speech recognition, they are usually built from shared, embedded HMMs at symbol level, in which state-conditional probability density functions are modeled with Gaussian mixtures. In contrast to speech recognition, however, it is unclear which kind of features should be used and, indeed, very different features sets are in use today. Among them, we have recently proposed to simply use columns of raw, binary image pixels, which are directly fed into embedded Bernoulli (mixture) HMMs, that is, embedded HMMs in which the emission probabilities are modeled with Bernoulli mixtures. The idea is to by-pass feature extraction and ensure that no discriminative information is filtered out during feature extraction, which in some sense is integrated into the recognition model. In this thesis, we review this idea along with some extensions that are currently providing state-of-the-art results on Arabic handwritten word recognition. es_ES
dc.format.extent 64 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Arabic handwriting recognition es_ES
dc.subject Bernoulli HMMs es_ES
dc.subject Conventional embedded HMMs es_ES
dc.subject Reconocimiento de escritura árabe es_ES
dc.subject Bernoulli HMMs embebidos convencionales es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.other Máster Universitario en Inteligencia Artificial, Reconocimiento de Formas e Imagen Digital-Màster Universitari en Intel·Ligència Artificial: Reconeixement de Formes i Imatge Digital es_ES
dc.title Arabic Handwritten Word Recognition based on Bernoulli Mixture HMMs es_ES
dc.type Tesis de máster es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Servicio de Alumnado - Servei d'Alumnat es_ES
dc.description.bibliographicCitation Alkhoury, I. (2010). Arabic Handwritten Word Recognition based on Bernoulli Mixture HMMs. http://hdl.handle.net/10251/11478 es_ES
dc.description.accrualMethod Archivo delegado es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem