- -

Estimación de la evapotranspiración real en zonas de llanura mediante productos de humedad de suelo de la misión SMAP

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estimación de la evapotranspiración real en zonas de llanura mediante productos de humedad de suelo de la misión SMAP

Mostrar el registro completo del ítem

Walker, E.; García, GA.; Venturini, V. (2018). Estimación de la evapotranspiración real en zonas de llanura mediante productos de humedad de suelo de la misión SMAP. Revista de Teledetección. (52):17-26. https://doi.org/10.4995/raet.2018.10566

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/114902

Ficheros en el ítem

Metadatos del ítem

Título: Estimación de la evapotranspiración real en zonas de llanura mediante productos de humedad de suelo de la misión SMAP
Otro titulo: Actual evapotranspiration estimation over flat lands using soil moisture products from SMAP mission
Autor: Walker, E. García, G. A. Venturini, V.
Fecha difusión:
Resumen:
[EN] Evapotranspiration (ET) is an important process in the water cycle and in the land-surface energy balance. Over the last decades, remote sensing has provided valuable information to quantify ET. However, methodologies ...[+]


[ES] La evapotranspiración (ET) es un proceso importante en el ciclo hidrológico y en el balance energético de la superficie terrestre. En las últimas décadas, la teledetección ha aportado información muy valiosa a la hora ...[+]
Palabras clave: Evapotranspiración , Humedad de suelo , SMAP , Evapotranspiración relativa , Evapotranspiration , Soil moisture , Relative evapotranspiration
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista de Teledetección. (issn: 1133-0953 ) (eissn: 1988-8740 )
DOI: 10.4995/raet.2018.10566
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/raet.2018.10566
Descripción: Revista oficial de la Asociación Española de Teledetección
Tipo: Artículo

References

Autovino, D., Minacapilli, M., Provenzano, G. 2016. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agricultural Water Management, 167, 86-94. https://doi.org/10.1016/j.agwat.2016.01.006

Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Van Gorsel, E. 2015. Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems. Agricultural and Forest Meteorology, 213, 126-137. https://doi.org/10.1016/j.agrformet.2015.06.020

Bastiaanssen, W.G.M., Meneti, M., Feddes, R.A., Holtslag, A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212, 19-212. https://doi.org/10.1016/S0022-1694(98)00253-4 [+]
Autovino, D., Minacapilli, M., Provenzano, G. 2016. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agricultural Water Management, 167, 86-94. https://doi.org/10.1016/j.agwat.2016.01.006

Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Van Gorsel, E. 2015. Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems. Agricultural and Forest Meteorology, 213, 126-137. https://doi.org/10.1016/j.agrformet.2015.06.020

Bastiaanssen, W.G.M., Meneti, M., Feddes, R.A., Holtslag, A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212, 19-212. https://doi.org/10.1016/S0022-1694(98)00253-4

Bedano, J.C., Domínguez, A., Arolfo, R., Wall, L.G. 2016. Effect of Good Agricultural Practices under no-till on litter and soil invertebrates in areas with different soil types. Soil and Tillage Research, 158, 100-109. https://doi.org/10.1016/j.still.2015.12.005

Bouchet, R.J. 1963. Évapotranspiration Réelle Et Potentielle Signification Climatique. International Association of Science and Hydrology, 62, 134-162.

Carlson, T.N., Capehart, W.J., Gillies, R.R. 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54, 161-167. https://doi.org/10.1016/0034-4257(95)00139-R

Carmona, F., Rivas, R. 2011. Estimación de la evapotranspiración real mediante datos meteorológicos e imágenes de satélite. Teledetección: Recientes aplicaciones en la región pampeana. Buenos Aires, Argentina.

Carmona, F., Holzman, M., Rivas, R., Degano, M.F., Kruse, E., Bayala, M. 2018. Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección, 51, 87-98. https://doi.org/10.4995/raet.2018.9259

Chang, D., Kothari, R., Member, S., Islam, S. 2003. Classification of Soil texture using remotely sensed Brightness temperature over the Southern Great Plains. IEEE transactions on Geoscience and Remote Sensing, 41(3), 664-674. https://doi.org/10.1109/TGRS.2003.809935

Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 682-690. https://doi.org/10.1029/WR020i006p00682

Detto, M., Montaldo, N., Albertson, J.D., Mancini, M., Katul, G. 2006. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research, 42, 1-16. https://doi.org/10.1029/2005WR004693

Entekhabi, D., Yueh, S., O'Neill, P.E., Kellog, K.H., Allen, A., Bindlish, R., Das, N., et al. 2014. SMAP Handbook-Soil Moisture Active Passive: mapping Soil Moisture and Freeze/Thaw from space. National Aeronautic Space Administration.

Girolimetto, D., Venturini, V. 2013. Estimación de la evapotranspiración utilizando bandas del infrarrojo medio. Revista de Teledetección, 40, 41-50.

Hu, G., Jia, L. 2015. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by combining Microwave and Optical Remote Sensing Observations. Remote Sensing, 7, 3056-3087. https://doi.org/10.3390/rs70303056

Hu, G.C., Jia, L., Menenti, M. 2015. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment 156, 510-526. https://doi.org/10.1016/j.rse.2014.10.017

INTA. 1978. Carta de suelos de la República Argentina. Hoja 3363-17. Marcos Juárez. 29-30.

Jiang, L., Islam, S. 2001. Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resources Research, 37(2), 329-340. https://doi.org/10.1029/2000WR900255

Knipper, K., Hogue, T., Scott, R., Franz, K. 2017. Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region. Remote Sensing, 9(3), 184. https://doi.org/10.3390/rs9030184

Komatsu, T.S. 2003. Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. Journal of Applied Meteorology, 42(9), 1330-1334. https://doi.org/10.1175/1520- 0450(2003)042%3C1330:TARPEO%3E2.0.CO;2

Li, Y., Zhou, J., Wang, H., Li, D., Jin, R., Zhou, Y., Zhou, Q. 2015. Integrating soil moisture retrieved from L-band microwave radiation into an energy balance model to improve evapotranspiration estimation on the irrigated oases of arid regions in northwest China. Agricultural and Forest Meteorology, 214-215, 306-318. https://doi.org/10.1016/j.agrformet.2015.08.260

Ma, W., Hafeez, M., Rabbani, U., Ishikawa, H., Ma, Y. 2012. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia. Atmospheric Environment Journal, 59, 408-414. https://doi.org/10.1016/j.atmosenv.2012.05.040

Marini, F., Santamaría, M., Oricchio, P., Di Bella, C.M., Bausaldo, A. 2017. Estimación de la evapotranspiración real (ETR) y de evapotranspiración potencial (ETP) en el sudoeste bonaerense (Argentina) a partir de imágenes MODIS. Revista de Teledetección, 48, 29-41. https://doi.org/10.4995/raet.2017.6743

Minicapilli, M., Consoli, S., Vanella, D., Ciraolo, G., Motisi, A. 2016. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sensing of Environment, 174, 10-23. https://doi.org/10.1016/j.rse.2015.12.018

Priestley, CH.B., Taylor, R.J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92. https://doi.org/10.1175/1520-0493(1972)100%3C0 081:OTAOSH%3E2.3.CO;2

Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A., Dzikiti, S. 2014. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna. South Africa, Remote Sensing, 6(8), 7406-7423. https://doi.org/10.3390/rs6087406

Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85-99. https://doi.org/10.5194/hess-6-85-2002

Tang, R.L., Li, Z.L., Tang, B.H. 2010. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semiarid regions: Implementation and validation. Remote Sensing of Environment, 114, 540-551. https://doi.org/10.1016/j.rse.2009.10.012

Thibeault, M., Cáceres, J., Dadamia, D., Soldano, A.,Uriburu Quirno, M., Guerrieri, J., Edrosa, R., Palomeque, M., Romaldi, L., Pucheta, J., Mogadouro, J., De Luca, E., Bustos, S., Aguero, S., Pascual, I., Mariotti, M. 2015. Spatial and temporal analysis of the monte buey saocom and smap core site. In IGARSS 2015, 969-971. https://doi.org/10.1109/IGARSS.2015.7325929

Venturini, V., Islam, S., Rodríguez, L. 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112, 132- 141. https://doi.org/10.1016/j.rse.2007.04.014

Wang, K.C., Liang, S.L. 2008. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature and soil moisture. Journal of Hydrometeorology, 9, 712-727. https://doi.org/10.1175/2007JHM911.1

Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313. https:// doi.org/10.1175/1520-0477(1982)063%3C1309:SC OTEO%3E2.0.CO;2

Zhu, W., Jia, S., Lv, A. 2017. A universal Ts-VI triangle method for the continuous retrieval of evaporative fraction from MODIS products. Journal of Geophysical Research: Atmospheres, 122, 10206- 10227. https://doi.org/10.1002/2017JD026964

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem