Mostrar el registro sencillo del ítem
dc.contributor.author | Walker, E. | es_ES |
dc.contributor.author | García, G. A. | es_ES |
dc.contributor.author | Venturini, V. | es_ES |
dc.date.accessioned | 2019-01-08T12:43:47Z | |
dc.date.available | 2019-01-08T12:43:47Z | |
dc.date.issued | 2018-12-26 | |
dc.identifier.issn | 1133-0953 | |
dc.identifier.uri | http://hdl.handle.net/10251/114902 | |
dc.description | Revista oficial de la Asociación Española de Teledetección | |
dc.description.abstract | [EN] Evapotranspiration (ET) is an important process in the water cycle and in the land-surface energy balance. Over the last decades, remote sensing has provided valuable information to quantify ET. However, methodologies that use data from microwave passive sensors, such as “Soil Moisture Active Passive” (SMAP) mission, have been recently developed. In this work, a formulation to derive the relative evapotranspiration and ET from in situ and microwave data, is presented. The methodology is based on a modification of the original Komatsu (2003) equation by introducing a calibration parameter to represent the wind speed and vegetation effects and estimate the relative evapotranspiration. This new equation was used on the Bouchet’s complementary relationship with the Priestley-Taylor’s equation, to estimate ET at regional scales. The results were compared with observed data in the Southern Great Plains – USA (SGP) area, indicating that the new model estimated ET with a root mean square error (RMSE) of 0.88 mmd–1 and a coefficient of determination (R2 ) greater than 0.8. The calibrated model was applied in an extremely humid period in Argentinean Pampas region with results near to potential rates. | es_ES |
dc.description.abstract | [ES] La evapotranspiración (ET) es un proceso importante en el ciclo hidrológico y en el balance energético de la superficie terrestre. En las últimas décadas, la teledetección ha aportado información muy valiosa a la hora de cuantificar la ET. Sin embargo, recién en los últimos años se han desarrollado metodologías que utilizan datos de sensores pasivos de microondas, como los de la misión “Soil Moisture Active Passive” (SMAP). En este trabajo, se presenta una formulación para determinar la evapotranspiración relativa y ET con datos in situ y de microondas. La metodología se basa en una modificación de la ecuación original de Komatsu (2003) en la que se introdujo un parámetro de calibración que representa el efecto de la velocidad del viento y la vegetación y permite estimar la evapotranspiración relativa. Esta nueva ecuación es utilizada en la relación complementaria de Bouchet junto a la ecuación de Priestley y Taylor, para estimar la ET a escala regional. Los resultados obtenidos fueron comparados con datos observados en el área de Southern Great Plains - USA (SGP), indicando que el nuevo modelo estima la ET con un error medio cuadrático (RMSE) de 0,88 mm d–1 y un coeficiente de determinación (R2) superior a 0,8. El modelo calibrado fue aplicado en un período extremadamente húmedo en la Región Pampeana de Argentina arrojando resultados que se aproximaron a tasas potenciales. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Revista de Teledetección | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Evapotranspiración | es_ES |
dc.subject | Humedad de suelo | es_ES |
dc.subject | SMAP | es_ES |
dc.subject | Evapotranspiración relativa | es_ES |
dc.subject | Evapotranspiration | es_ES |
dc.subject | Soil moisture | es_ES |
dc.subject | Relative evapotranspiration | es_ES |
dc.title | Estimación de la evapotranspiración real en zonas de llanura mediante productos de humedad de suelo de la misión SMAP | es_ES |
dc.title.alternative | Actual evapotranspiration estimation over flat lands using soil moisture products from SMAP mission | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-01-08T12:03:28Z | |
dc.identifier.doi | 10.4995/raet.2018.10566 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Walker, E.; García, GA.; Venturini, V. (2018). Estimación de la evapotranspiración real en zonas de llanura mediante productos de humedad de suelo de la misión SMAP. Revista de Teledetección. (52):17-26. https://doi.org/10.4995/raet.2018.10566 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/raet.2018.10566 | es_ES |
dc.description.upvformatpinicio | 17 | es_ES |
dc.description.upvformatpfin | 26 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 52 | |
dc.identifier.eissn | 1988-8740 | |
dc.description.references | Autovino, D., Minacapilli, M., Provenzano, G. 2016. Modelling bulk surface resistance by MODIS data and assessment of MOD16A2 evapotranspiration product in an irrigation district of Southern Italy. Agricultural Water Management, 167, 86-94. https://doi.org/10.1016/j.agwat.2016.01.006 | es_ES |
dc.description.references | Barraza, V., Restrepo-Coupe, N., Huete, A., Grings, F., Van Gorsel, E. 2015. Passive microwave and optical index approaches for estimating surface conductance and evapotranspiration in forest ecosystems. Agricultural and Forest Meteorology, 213, 126-137. https://doi.org/10.1016/j.agrformet.2015.06.020 | es_ES |
dc.description.references | Bastiaanssen, W.G.M., Meneti, M., Feddes, R.A., Holtslag, A.A.M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212, 19-212. https://doi.org/10.1016/S0022-1694(98)00253-4 | es_ES |
dc.description.references | Bedano, J.C., Domínguez, A., Arolfo, R., Wall, L.G. 2016. Effect of Good Agricultural Practices under no-till on litter and soil invertebrates in areas with different soil types. Soil and Tillage Research, 158, 100-109. https://doi.org/10.1016/j.still.2015.12.005 | es_ES |
dc.description.references | Bouchet, R.J. 1963. Évapotranspiration Réelle Et Potentielle Signification Climatique. International Association of Science and Hydrology, 62, 134-162. | es_ES |
dc.description.references | Carlson, T.N., Capehart, W.J., Gillies, R.R. 1995. A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sensing of Environment, 54, 161-167. https://doi.org/10.1016/0034-4257(95)00139-R | es_ES |
dc.description.references | Carmona, F., Rivas, R. 2011. Estimación de la evapotranspiración real mediante datos meteorológicos e imágenes de satélite. Teledetección: Recientes aplicaciones en la región pampeana. Buenos Aires, Argentina. | es_ES |
dc.description.references | Carmona, F., Holzman, M., Rivas, R., Degano, M.F., Kruse, E., Bayala, M. 2018. Evaluación de dos modelos para la estimación de la evapotranspiración de referencia con datos CERES. Revista de Teledetección, 51, 87-98. https://doi.org/10.4995/raet.2018.9259 | es_ES |
dc.description.references | Chang, D., Kothari, R., Member, S., Islam, S. 2003. Classification of Soil texture using remotely sensed Brightness temperature over the Southern Great Plains. IEEE transactions on Geoscience and Remote Sensing, 41(3), 664-674. https://doi.org/10.1109/TGRS.2003.809935 | es_ES |
dc.description.references | Cosby, B.J., Hornberger, G.M., Clapp, R.B., Ginn, T.R. 1984. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research, 20, 682-690. https://doi.org/10.1029/WR020i006p00682 | es_ES |
dc.description.references | Detto, M., Montaldo, N., Albertson, J.D., Mancini, M., Katul, G. 2006. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research, 42, 1-16. https://doi.org/10.1029/2005WR004693 | es_ES |
dc.description.references | Entekhabi, D., Yueh, S., O'Neill, P.E., Kellog, K.H., Allen, A., Bindlish, R., Das, N., et al. 2014. SMAP Handbook-Soil Moisture Active Passive: mapping Soil Moisture and Freeze/Thaw from space. National Aeronautic Space Administration. | es_ES |
dc.description.references | Girolimetto, D., Venturini, V. 2013. Estimación de la evapotranspiración utilizando bandas del infrarrojo medio. Revista de Teledetección, 40, 41-50. | es_ES |
dc.description.references | Hu, G., Jia, L. 2015. Monitoring of Evapotranspiration in a Semi-Arid Inland River Basin by combining Microwave and Optical Remote Sensing Observations. Remote Sensing, 7, 3056-3087. https://doi.org/10.3390/rs70303056 | es_ES |
dc.description.references | Hu, G.C., Jia, L., Menenti, M. 2015. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011. Remote Sensing of Environment 156, 510-526. https://doi.org/10.1016/j.rse.2014.10.017 | es_ES |
dc.description.references | INTA. 1978. Carta de suelos de la República Argentina. Hoja 3363-17. Marcos Juárez. 29-30. | es_ES |
dc.description.references | Jiang, L., Islam, S. 2001. Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resources Research, 37(2), 329-340. https://doi.org/10.1029/2000WR900255 | es_ES |
dc.description.references | Knipper, K., Hogue, T., Scott, R., Franz, K. 2017. Evapotranspiration estimates derived using multi-platform remote sensing in a semiarid region. Remote Sensing, 9(3), 184. https://doi.org/10.3390/rs9030184 | es_ES |
dc.description.references | Komatsu, T.S. 2003. Toward a robust phenomenological expression of evaporation efficiency for unsaturated soil surfaces. Journal of Applied Meteorology, 42(9), 1330-1334. https://doi.org/10.1175/1520- 0450(2003)042%3C1330:TARPEO%3E2.0.CO;2 | es_ES |
dc.description.references | Li, Y., Zhou, J., Wang, H., Li, D., Jin, R., Zhou, Y., Zhou, Q. 2015. Integrating soil moisture retrieved from L-band microwave radiation into an energy balance model to improve evapotranspiration estimation on the irrigated oases of arid regions in northwest China. Agricultural and Forest Meteorology, 214-215, 306-318. https://doi.org/10.1016/j.agrformet.2015.08.260 | es_ES |
dc.description.references | Ma, W., Hafeez, M., Rabbani, U., Ishikawa, H., Ma, Y. 2012. Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia. Atmospheric Environment Journal, 59, 408-414. https://doi.org/10.1016/j.atmosenv.2012.05.040 | es_ES |
dc.description.references | Marini, F., Santamaría, M., Oricchio, P., Di Bella, C.M., Bausaldo, A. 2017. Estimación de la evapotranspiración real (ETR) y de evapotranspiración potencial (ETP) en el sudoeste bonaerense (Argentina) a partir de imágenes MODIS. Revista de Teledetección, 48, 29-41. https://doi.org/10.4995/raet.2017.6743 | es_ES |
dc.description.references | Minicapilli, M., Consoli, S., Vanella, D., Ciraolo, G., Motisi, A. 2016. A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sensing of Environment, 174, 10-23. https://doi.org/10.1016/j.rse.2015.12.018 | es_ES |
dc.description.references | Priestley, CH.B., Taylor, R.J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92. https://doi.org/10.1175/1520-0493(1972)100%3C0 081:OTAOSH%3E2.3.CO;2 | es_ES |
dc.description.references | Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A., Dzikiti, S. 2014. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna. South Africa, Remote Sensing, 6(8), 7406-7423. https://doi.org/10.3390/rs6087406 | es_ES |
dc.description.references | Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6, 85-99. https://doi.org/10.5194/hess-6-85-2002 | es_ES |
dc.description.references | Tang, R.L., Li, Z.L., Tang, B.H. 2010. An application of the Ts-VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semiarid regions: Implementation and validation. Remote Sensing of Environment, 114, 540-551. https://doi.org/10.1016/j.rse.2009.10.012 | es_ES |
dc.description.references | Thibeault, M., Cáceres, J., Dadamia, D., Soldano, A.,Uriburu Quirno, M., Guerrieri, J., Edrosa, R., Palomeque, M., Romaldi, L., Pucheta, J., Mogadouro, J., De Luca, E., Bustos, S., Aguero, S., Pascual, I., Mariotti, M. 2015. Spatial and temporal analysis of the monte buey saocom and smap core site. In IGARSS 2015, 969-971. https://doi.org/10.1109/IGARSS.2015.7325929 | es_ES |
dc.description.references | Venturini, V., Islam, S., Rodríguez, L. 2008. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment, 112, 132- 141. https://doi.org/10.1016/j.rse.2007.04.014 | es_ES |
dc.description.references | Wang, K.C., Liang, S.L. 2008. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature and soil moisture. Journal of Hydrometeorology, 9, 712-727. https://doi.org/10.1175/2007JHM911.1 | es_ES |
dc.description.references | Willmott, C. J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313. https:// doi.org/10.1175/1520-0477(1982)063%3C1309:SC OTEO%3E2.0.CO;2 | es_ES |
dc.description.references | Zhu, W., Jia, S., Lv, A. 2017. A universal Ts-VI triangle method for the continuous retrieval of evaporative fraction from MODIS products. Journal of Geophysical Research: Atmospheres, 122, 10206- 10227. https://doi.org/10.1002/2017JD026964 | es_ES |