- -

Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation

Show simple item record

Files in this item

dc.contributor.author Valencia-Sullca, Cristina Encarnación es_ES
dc.contributor.author Atarés Huerta, Lorena María es_ES
dc.contributor.author Vargas, Maria es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2019-01-18T13:49:25Z
dc.date.available 2019-01-18T13:49:25Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1935-5130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/115834
dc.description.abstract [EN] Cassava starch-chitosan films were obtained by melt bending and compression molding, using glycerol and polyethylene glycol as plasticizers. Both the starch/chitosan and the polymer/plasticizer ratios were varied in order to analyze their effect on the physical properties of the films. Additionally, the antimicrobial activity of 70:30 polymer:plasticizer films was tested in cold-stored pork meat slices as affected by chitosan content. All film components were thermally stable up to 200 A degrees C, which guaranteed their thermostability during film processing. Starch and chitosan had limited miscibility by melt blending, which resulted in heterogeneous film microstructure. Polyethylene glycol partially crystallized in the films, to a greater extent as the chitosan ratio increased, which limited its plasticizing effect. The films with the highest plasticizer ratio were more permeable to water vapor, less rigid, and less resistant to break. The variation in the chitosan content did not have a significant effect on water vapor permeability. As the chitosan proportion increased, the films became less stretchable, more rigid, and more resistant to break, with a more saturated yellowish color. The incorporation of the highest amount of chitosan in the films led to the reduction in coliforms and total aerobic counts of cold-stored pork meat slices, thus extending their shelf-life. es_ES
dc.description.sponsorship The authors acknowledge the financial support provided by the Spanish Ministerio de Economia y Competividad (Projects AGL2013-42989-R and AGL2016-76699-R). Author Cristina Valencia-Sullca thanks the Peruvian Grant National Program (PRONABEC Grant).
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation AEI/AGL2016-76699-R es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Thermoplastic starch es_ES
dc.subject Microstructure es_ES
dc.subject Thermal analysis es_ES
dc.subject Mechanical properties es_ES
dc.subject Antimicrobial es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-018-2094-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-07-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Valencia-Sullca, CE.; Atarés Huerta, LM.; Vargas, M.; Chiralt, A. (2018). Physical and Antimicrobial Properties of Compression-Molded Cassava Starch-Chitosan Films for Meat Preservation. Food and Bioprocess Technology. 11(7):1339-1349. doi:10.1007/s11947-018-2094-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11947-018-2094-5 es_ES
dc.description.upvformatpinicio 1339 es_ES
dc.description.upvformatpfin 1349 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 7 es_ES
dc.relation.pasarela S\360955 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.relation.references Alves, V. D., Mali, S., Beleia, A., & Grossmann, M. V. (2007). Effect of glycerol and amylose enrichment on cassava starch film properties. Journal of Food Engineering, 78(3), 941–946. es_ES
dc.relation.references ASTM (1995). Standard test methods for water vapour transmission of materials. In: Standards designations: E96-95. Annual book of ASTM standards (pp. 406-413). Philadelphia, PA: American Society for Testing and Materials. es_ES
dc.relation.references ASTM (1999). Standard test method for specular gloss. In: Designation (D523). Annual book of ASTM standards, Vol. 06.01. Philadelphia, PA: American Society for Testing and Materials. es_ES
dc.relation.references ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. In: Standard D882 annual book of American standard testing methods. Philadelphia, PA: American Society for Testing and Materials. es_ES
dc.relation.references Atarés, L., Bonilla, J., & Chiralt, A. (2010). Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 100(4), 678–687. es_ES
dc.relation.references Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303–312. es_ES
dc.relation.references Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol-chitosan biodegradable films. Food Hydrocolloids, 35, 463–470. es_ES
dc.relation.references Bourtoom, T., & Chinnan, M. S. (2008). Preparation and properties of rice starch–chitosan blend biodegradable film. LWT-Food Science and Technology, 41(9), 1633–1641. es_ES
dc.relation.references Cano, A., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2014). Effect of amylose: amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111(0), 543–555. es_ES
dc.relation.references Carvalho, A. J. F. (2008). Starch: Major sources, properties and applications as thermoplastic materials. In M. N. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier. es_ES
dc.relation.references Chillo, S., Flores, S., Mastromatteo, M., Conte, A., Gerschenson, L., & Del Nobile, M. A. (2008). Influence of glycerol and chitosan on tapioca starch-based edible film properties. Journal of Food Engineering, 88(2), 159–168. es_ES
dc.relation.references Commission Regulation, 2005 (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. In Official Journal of the European Union pp 338/1–338/26. es_ES
dc.relation.references Da Róz, A., Carvalho, A., Gandini, A., & Curvelo, A. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417–424. es_ES
dc.relation.references Dang, K., & Yoksan, R. (2015). Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydrate Polymers, 115, 575–581. es_ES
dc.relation.references Dou, B., Dupont, V., Williams, P. T., Chen, H., & Ding, Y. (2009). Thermogravimetric kinetics of crude glycerol. Bioresource Technology, 100(9), 2613–2620. es_ES
dc.relation.references Fang, J., Fawler, P., Eserig, C., González, R., Costa, J., & Chamudis, L. (2005). Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohydrate Polymers, 60(1), 39–42. es_ES
dc.relation.references Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Maryland, USA: Aspen Publishers, Inc.. es_ES
dc.relation.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012a). Edible and biodegradable starch films: A review. Food Bioprocessing Technology, 5(6), 2058–2076. es_ES
dc.relation.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012b). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310. es_ES
dc.relation.references López, O., Garcia, A., Villar, M., Gentili, A., Rodriguez, M., & Albertengo, L. (2014). Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT-Food Science and Technology, 57(106), 106–1515. es_ES
dc.relation.references Mali, S., Grossmann, M. V. E., García, M. A., Martino, M. N., & Zaritsky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(4), 453–460. es_ES
dc.relation.references Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R. A., Marques, C. P., Marconcini, J. M., Mattoso, L. H. C., Medeiros, E. S., & Oliveira, J. E. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458. es_ES
dc.relation.references Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155–165. es_ES
dc.relation.references Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282–290. es_ES
dc.relation.references Pelissari, F., Grossmann, M., Yamashita, F., & Pineda, E. (2009). Antimicrobial, mechanical and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499–7504. es_ES
dc.relation.references Pelissari, F. M., Yamashita, F., García, M. A., Martino, M. N., Zaritzky, N. E., & Grossmann, M. V. E. (2012). Constrained mixture design applied to the development of cassava starch-chitosan blown films. Journal of Food Engineering, 108(2), 262–267. es_ES
dc.relation.references Song, R., Xue, R., He, L. H., Liu, Y., & Xiao, Q. L. (2008). The structure and properties of chitosan/polyethylene glycol/silica ternary hybrid organic-inorganic films. Chinese Journal of Polymer Science, 26(05), 621–630.v. es_ES
dc.relation.references Su, J. F., Huang, Z., Yuan, X. Y., Wang, X. Y., & Lim, M. (2010). Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydrate Polymers, 79(1), 145–153. es_ES
dc.relation.references Thunwall, M., Boldizar, A., & Rigdahl, M. (2006). Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules, 7(3), 981–986. es_ES
dc.relation.references Tomé, L., Fernandes, S., Sadocco, P., Causio, J., Silvertre, A., Neto, P., & Freire, C. (2012). Antibacterial thermoplastic starch- chitosan based materials prepared by melt-mixing. BioResources, 7(3), 3398–3409. es_ES
dc.relation.references Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19(1), 53–61. es_ES
dc.relation.references Xu, Y. X., Kim, K. M., Hanna, M. A., & Nag, D. (2005). Chitosan–starch composite film: Preparation and characterization. Industrial Crops and Products, 21(2), 185–192. es_ES
dc.relation.references Yang, L., & Paulson, A. T. (2000). Mechanical and water vapour barrier properties of edible gellan. Food Research International, 33(7), 563–570. es_ES


This item appears in the following Collection(s)

Show simple item record